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Abstract

The goal of this research effort was to analyze the effect of fixed costs on learning

curve calculations. Specifically, the research effort focused on two general research

areas. The first general area addressed the identification of current cost analysis practice

with respect to handling of fixed costs in learning curve calculations. After identification

of current practice, the standard unit learning curve model's (AXb) ability to estimate total

production run costs for a new production run when the slope was derived from both

historical total cost lot data and historical variable cost lot data was examined. Historical

lot cost data was simulated for both the total cost and variable cost cases under three

slopes, three fixed cost percentages, and three lot sizing profiles.

The second general area addressed the predictive ability, measured in terms of the

mean absolute deviation (MAD), of the AXb model versus the SAF/FMC model (F/Q +

AXb) when fit to total cost lot data. The SAF/FMC model explicitly incorporates a fixed

cost component while the AXb model does not. Comparisons between models using

different slopes, fixed cost percentages, and lot sizing profiles were addressed through

ANOVA.

The results demonstrated three main points: 1) there are a wide variety of cost

analysis practices with respect to treatment of fixed costs in learning curve calculations, 2)

the AXb model by itself was inadequate for production run total cost estimating, and 3) the

SAF/FMC model was superior to the standard model under all conditions investigated

when fitted to total cost lot data.
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ANALYSIS OF THE EFFECTS OF FIXED COSTS ON LEARNING CURVE
CALCULATIONS

I. Introduction

General Issue

The Department of Defense (DOD) uses forecasting to determine the future

demand for resources. Cost estimating is a valuable area of forecasting and has the

following characteristics as described by Nahmias. First, point estimates are usually

wrong. Second, a good cost estimate is more than a point estimate. Since point estimates

are wrong, a good cost estimate will include some method of including expected cost

estimating error. Third, aggregate cost estimates are more accurate and have less

variance. To illustrate, "from statistics, the variance of the average of a collection of

independent identically distributed random variables is lower than the variance of each of

the random variables; that is, the variance of the sample mean is smaller than the

population variance." (24:50-51). Fourth, the longer the cost estimate horizon, the less

likely the cost estimate will be accurate. Last, cost estimates should not be used to the

exclusion of known information. Keeping in mind the characteristics of cost estimating,

good cost estimates are invaluable to decision makers when planning their resource

requirements.

Within DOD, cost estimating is a forecast of future costs based upon available

historical data and on our best understanding of current and future trends. The type of

cost estimating method to be used will depend on the amount of detail of program
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definition, level of detail required, availability of data, and time constraints. Three of the

most common methods are analogy, grass roots, and parametric (2:Sec 3, 21).

The analogous or comparative method is based on the assumption that a new

program can be represented by systems/components produced in the past. The analogous

method uses actual costs of a similar program and adjusts these costs for complexity,

technical, or physical differences to estimate the cost of the new system. Analogy

estimates are most appropriate in the early phases of the acquisition process. These early

phases represent the time period when actual cost data is insufficient for detailed analysis,

but the system and technical definition are sufficient to draw an analogy to an existing

system.

The second method is the grass roots or engineering build-up method. This

estimate is conducted at the lowest levels of the work breakdown structure (WBS). "The

underlying assumption of the grass roots methodology is that future costs for a system can

be predicted with a great deal of accuracy from historical costs of that system." (2: Sec 3,

25). The grass roots method requires time, detailed engineering information, and design

stabilization. The drawback of this method is the time and detailed information required.

Grass roots is most appropriate in the later phases of the system acquisition process when

the system and technical definition are well defined and sufficient actual cost data is

available.

The third method is parametric estimation. This method can be used early in the

acquisition process since it requires only limited program and technical definition. It uses

mathematical and statistical techniques to relate relevant historical data to the system

2



being estimated. The results of using these techniques are the generation of one or more

cost estimating relationships (CERs) or a cost model.

Besides needing only limited program and technical definition for development,

CERs are usually simple and easy to use which reduces the time needed to perform cost

estimates. A widely used CER is the learning curve (2: Sec 3, 22).

The learning curve is used extensively for estimating production and modification

costs of major systems. To use the learning curve properly, DOD cost analysts must

clearly understand both the learning curve construction and underlying assumptions.

Improperly using the learning curve will likely lead to less accurate estimates and loss of

credibility.

Specific Issue

Within DOD, USAF uses learning curves extensively for estimating production

costs, specifically in acquisition of new weapon systems and major modifications of

existing systems. These production costs can be categorized as recurring and non-

recurring. Recurring costs are those "costs common to every production unit"

(2:Appendix A, 62) and include costs such as direct materials and direct labor Non-

recurring costs are "elements of development and production cost that generally occur

only once in the life cycle of a weapon/support system" (2:Appendix A, 50) and include

costs such as tooling, prototyping, and setup. Recently, costs are more commonly divided

into the categories of fixed and variable (these two definitions are provided in the

definitions section on pg 9).



Basic learning curve theory, when applied to historical dollar costs, mandates the

use of only constant dollar recurring (variable) costs in learning curve calculations;

calculations which provide learning curve slopes and associated cost estimates for both

current and future programs. Unfortunately, numerous USAF cost studies include both

recurring and non-recurring historical costs in these calculations. This could lead to

inaccuracies in cost estimates for both production and modification programs.

To estimate weapon system production or modification costs using learning

curves, USAF cost analysts use the following steps: 1) define the new system, 2) identify

comparable systems, 3) fit production lot data from the comparable systems to derive a set

of learning curve slopes, 4) derive an expected slope for the new system, and 5) apply the

derived slope in the cost estimate. If during these steps recurring and non-recurring, or

variable and fixed, costs are not separated, the derived slope used for the estimation could

be overstated (too steep) due to the inclusion of non-recurring costs. If the slope is too

steep, the production or modification cost estimates for the system would be understated.

To illustrate these concepts, Figure 1 shows two unit formulation learning curves:

one has a slope of 80% while the other has a slope of 75% (the steeper slope). Note the

unit costs from the 75% curve are lower than those from the 80% curve.

4



$1,000

$100
1 Units 10

1- 80% Slope in 75% Slope

Figure 1 Unit Cost Plot Showing Unit Costs Under Different Slopes

This is but one example of the misapplication of learning curves. One of the main

issues to be addressed in this thesis is whether the inclusion of non-recurring (fixed) costs

in development and/or application of the standard unit formulation learning curve causes a

significant error in production cost estimates.

The other major issue is: If inclusion of fixed costs in the development and/or

application of the standard unit formulation causes a significant error in production cost

estimates, will a learning curve formulation which includes a fixed cost component do a

better job?

General Research Hypotheses

This thesis attempted to address two general research hypotheses:

1. Developing or applying slopes based on total cost data leads to total cost

estimates which differ significantly from cost estimates derived using the theoretically

correct method of recurring (variable) cost data for either slope development or slope

application when computing total costs.
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2. When confronted with total cost and lot data, a standard learning curve model

which includes a non-recurring (fixed) cost component is superior to the standard learning

curve model in terms of mean absolute deviation.

Research Ouestions

To test the above hypotheses, the following specific research questions were

developed. Each of the research questions related to a specific general hypothesis:

Research Ouestions for General Research Hypothesis #1.

1. With the standard learning curve model, do USAF cost studies calculate

learning curve slopes correctly but apply them incorrectly when estimating total

production run costs, i.e., do they use recurring costs only for calculating the slope

but include fixed cost in the theoretical first unit cost when applying that slope?

2. With the standard learning curve model, do USAF cost studies develop learning

curve slopes incorrectly but apply them correctly when estimating total production

run costs, i.e., do they use total cost data for calculating the slope but include

variable cost only in the theoretical first unit cost when applying that slope?

3. With the standard learning curve model, do USAF cost studies develop learning

curve slopes incorrectly and apply them incorrectly when estimating total

production run costs, i.e., do they use total cost data for slope development and

include fixed cost in the theoretical first unit cost when applying that slope?

4. Do the correct slope development and incorrect slope applications lead to

significant differences in total cost estimates for a fixed length production run

when compared to the correct/correct combination?

6



5. Do the incorrect slope development and correct slope applications lead to

significant differences in total cost estimates for a fixed length production run

when compared to the correct/correct combination"

6. Do the incorrect slope development and incorrect slope applications lead to

significant differences in total cost estimates for a fixed length production run

when compared to the correct/correct combination?

Research Questions for General Research Hypothesis #2.

7. Is the SAF/FMC model, a model which includes a fixed cost component,

superior to the standard learning curve model in terms of mean absolute deviation

under all of the slope levels under consideration?

8. Is the SAF/FMC model superior to the standard learning curve model in terms

of mean absolute deviation under all of the fixed cost percentage levels under

consideration?

9. Is the SAF/FMC model superior to the standard learning curve model in terms

of mean absolute deviation under the lot size profiles under consideration?

General Approach

In order to test our hypotheses, this study will take the following steps: a)

conduct a comprehensive review of pertinent literature, b) conduct interviews with

appropriate AFIT course instructors and cost analysts in selected system program offices

at Wright-Patterson AFB, c) establish a methodology (under certain scope, assumptions,

and limitations) to test our hypotheses, d) analyze the output data, and e) draw

conclusions and recommend areas for further research.

7



Limitations and Assumptions of the Study

Limitations.

1. This study will address only the unit formulation of the learning curve.

2. Simulating one new production run from the derived slopes allows only

assessment of the magnitude in standard deviations from a theoretical mean as a judgment

of the significance of the underestimation or overestimation.

3. The ranges for the slope (75%, 85%, and 95%) were chosen in order to

compare systems which would encounter a small learning effect (5%) with systems which

would have a larger learning effect (25% and 15%). Also, this range is consistent with

different systems within the Air Force which have shown learning from less than 5% to

greater than 30%.

4. The ranges for the fixed cost burden (20%, 35%, and 50%) were chosen in

order to determine the effects low, medium and high burden rates would have on cost

estimates. According to a Balut, Frazier, and Bui study in 1991 (5:3), airframe

manufacturers were averaging around 33% fixed costs with the percentage increasing.

Also, Moses used a range of 15%, 33%, and 50% when studying the effects of fixed cost

burden in his studies from 1990 to 1991 (22 12, 23 14). Our range was chosen based

upon these two facts.

5. Only lot fixed costs such as setup, tooling, and ordering are captured in this

study.

6. The use of a fixed effects model for the analysis of variance (ANOVA) makes

inferential conclusions to other factor levels statistically improper.

8



Assumptions.

1. The population follows the unit formulation of the learning curve theory.

2. The error term for the learning curve formulation, expressed in log space, is a

random independent term with a mean of zero and a constant variance.

3. Fixed and non-recurring costs and variable and recurring costs are treated

synonymously.

Definition of Terms

Variable/Recurring Costs: "costs common to every production unit" (2:Appendix A, 62)

Fixed/Non-recurring Costs: elements of production costs that generally occur only once

per lot during a production run of a weapon/support system (2: Appendix A, 50).

Learning: The improvements (lower costs or less labor hours required) represented by the

results not only of cumulative repetition of past practices, but of changes in:

production designs; product mix; operating technology; facilities and equipment;

management, planning, and control; materials quality; and labor capabilities and

incentives (21: 11).

9



Overview of Remaining Chapters

The remaining four chapters address all of the research questions. The next

chapter, Chapter 2, is the literature review. Relevant literature was reviewed, the basics of

the learning curve described, and models which treat fixed costs were reviewed. Chapter

3 outlines the methodology used to answer the research questions. It includes the

techniques and tests used as well as the justification for the selected techniques and tests.

Chapter 4 analyzes the results of the techniques and tests described in Chapter 3. Finally,

Chapter 5 states the conclusions drawn from the analysis and states areas for future

research.

10



II. Literature Review

Chapter Overview

The first section defines the learning curve theory, explores a brief history of

learning curves, lists various learning curve formulations, examines the two common log-

linear formulations, and selects the best formulation for this thesis effort. The second

chapter section explores the fixed component of costs, its functional treatment, and

methods to include a fixed component of costs in learning curve calculations.

Learning Curve Theory

Learning curve theory, in its most elementary expression, states that as the

quantity of units produced increases, the cost per unit of production decreases in some

regular pattern (15:9 Feb 94). According to Asher, "the theory of the progress curve in its

most popular form states that as the total quantity of units produced doubles, the cost per

unit declines by some constant percentage. The cost per unit may be either the average

cost of a given number of units or the cost of a specific unit"(3: 1). Using the average cost

of a given number of units would represent the cumulative average formulation while

using the cost of a specific unit would represent the unit formulation. The 'cost' described

by Asher has traditionally been measured with labor hours or constant dollar costs. This

thesis deals with constant dollar costs, but results could be generalized to labor hours as

well.

Either of the popular formulations (cumulative average and unit) of learning curve

theory discussed above demonstrate a decreasing exponential function plotted on

11



arithmetic grids and a decreasing linear function plotted on logarithmic grids. For

illustrative purposes, Figures 2 and 3 show the unit formulation for a learning curve with a

first unit cost of$1,000 and a slope of 80%. The slope will be outlined and explained later

in another section.

$1,o000

$600
""$400

$200
so i I I i I I I I

1 2 3 4 5 6 7 8 9 10

Units

] Unit Cost

Figure 2 Unit Learning Curve Plotted on Arithmetic Grids

1000

lO)

100

1 10

Units

-Unt Costi

Figure 3 Unit Learning Curve Plotted on Logarithmic Grids
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A number of different causes account for the decline in unit cost with increases in

production. Some of those causes are as follows: 1) direct labor job familiarization

resulting from repetition, 2) improvements in indirect (support) labor, 3) improvements in

management, 4) advances in technology, 5) better designs and production methods, 6)

reduced materials waste and scrap, 7) improvements in tooling, and 8) competition (3:3,

14:17, 26.38, 32:306-309). These causes merely comprise a representative sample of the

many reasons unit costs decline with increasing production. Of the causes listed above,

the first reason, direct labor job familiarization through repetition, has received the widest

coverage in learning curve literature.

Given the multiple causes for unit cost reductions, the learning curve has taken on

many different names which attempt to capture the essence of the differing causes. Some

of those specific names include cost improvement curve, experience curve, and progress

curve (32:303). Each of these names is used interchangeably with learning curve

throughout the literature to describe the presence of the learning curve pattern For

consistency, the term learning curve will be used throughout this thesis.

History

The pioneering work in learning curves began in 1922 when T.P. Wright began

researching the underlying concepts of learning curve theory. In February 1936, he

formalized his research through publication of an article in the Journal of Aeronautical

Sciences titled "Factors Affecting the Cost of Airplanes" (311: 122). Wright identified

several factors which affect airplane production cost design, tooling and adaptability of

the design to the tooling, engineering changes during production, size, weight, and the

13



number of airplanes built. Wright asserted that the three recurring cost components, i.e.,

direct labor, materials, and overhead, vary with increases in production quantities (31: 124-

125).

With respect to direct labor, Wright concluded that average labor costs when

compared to production quantity exhibited a decreasing exponential pattern (ratio

relationship) that was linear when plotted on logarithmic grids (refer to Figures 2 and 3).

He identified that decreasing exponential pattern as an "eighty percent curve" to which he

attributed a specific meaning. Wright said the "eighty percent curve represents the factor

by which the average labor cost in any quantity shall be multiplied in order to determine

the average labor cost for a quantity of twice that number of airplanes" (31:124-125). In

effect, Wright discovered a relationship between average labor costs and cumulative

production. His research became widely known as the cumulative average formulation of

learning curve theory. This specific formulation will be explained later in the formulations

section.

During World War II, interest in the learning curve concept increased as defense

production facilities struggled to plan manpower and financial requirements necessary for

wartime production of ships and aircraft (32:303). In the early 1940s, JR. Crawford,

while working for the Lockheed Aircraft Corporation, published an undated booklet for

Lockheed personnel titled Learning Curve, Ship Curve, Ratios, Related Data (3:21). In

the booklet, Crawford presented an equation, based on his research, that showed a

relationship between the direct labor hours per unit of production compared to the

cumulative unit number of production. The mathematical function was a decreasing

exponential function like Wright's; however, it had an entirely different meaning. While

14



Wright focused on the average cost based on total units produced, Crawford focused on

the unit cost of any unit in the production run. Crawford's research led to the formulation

commonly known as the unit formulation of learning curve theory. This specific

formulation will also be explained later in the formulations section.

After World War II, the USAF Air Material Command (AMC) conducted a

comprehensive study and published the most famous data source for post World War II

learning curve studies. That data source was titled Source Book of World War II Basic

Data: Airframe Industry, Volume 1 (3:38). This source contained a comprehensive

collection of data for all aircraft manufacturers who produced military aircraft between

1940 and 1945.

Later the USAF contracted with the Stanford Research Institute to study and

validate the unit learning curve formulation (1 Sec 1, 2). The study, led by J.R. Crawford,

used all World War II airframe labor data and confirmed that direct labor hours declined

by a constant percentage over successively doubled quantities of units produced.

Many subsequent studies on learning curves have been published since these early studies

of the 1930s and 40s to address underlying assumptions in the unit and cumulative average

formulations, linearity of the learning curve, the effects of production rate, etc. Virtually

all of these studies tie back to the original formulations proposed by Wright and Crawford.

Mathematical Expression of the Learning Curve

Numerous learning curve formulations have surfaced since the identification of the

learning curve relationship in 1936. Some of the more prominent expressions include the

log-linear (log-log) model, rate adjustment formulation, Stanford-B formulation, S curve
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formulation, and plateau formulation. Each formulation has its own unique qualities and

characteristics; however, the log-linear formulation is the most widely accepted in practice

(32:304) and is the only formulation considered in this thesis.

Log-Linear Formulations

A log-linear expression simply describes the expected functional pattern of costs

with increases in production; however, it does not define the underlying specific

formulation under consideration. As mentioned in previous sections, two primary

formulations using the log-linear expression exist today: the cumulative average

formulation and the unit formulation.

Cumulative Average Formulation. The cumulative average formulation, also

known as the Wright or Northrop construction, states that as the cumulative number of

units produced doubles, the cumulative average cost per unit declines by a constant

percentage (15:16 Feb 94). This can be expressed by the following function:

y-A (1)

where

Y., = average cost of units 1 through X
A = constant representing the theoretical cost of the first unit,
b = learning curve exponent where -1•< b •_ 0

Unit Formulation. The unit formulation, also called the Boeing or Crawford

construction, states that as the total quantity of units produced doubles, the cost per unit

declines by a constant percentage (15:9 Feb 94). This can be expressed by the following

function:
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Y = AXb (2)

where

Y• -the cost of unit X
A = constant representing the theoretical cost of the first unit,
b = learning curve exponent where -1•5 b 5 0

Learning Curve Exponent. The learning curve exponent, b, is related to the slope

and rate of change of the learning curve (1 Sec 2, 2). The formula for calculation of the

learning curve exponent is as follows:

B = log(slope expressed in decimal form)

log(2) (3)

The slope of the learning curve is different from the normal mathematical definition

of slope (i.e., rise/run or AY/AX). Instead, the learning curve slope is related to the

learning rate which is defined as the percentage of cost decrease between doubled

quantities (14:17). For example, if unit 1 costs $100 and unit 2 costs $90, then (Cost of

Unit 2) + (Cost of Unit 1) = .90, so there is a 10% learning rate due to the 10% decline in

cost between doubled quantities. The slope is nothing more than (1 - the learning rate), or

in this case 1 - 10% = 90%. With this in mind, an alternative formula for computing b is

as follows:

B= log(l-learning rate in decimal form)
log(2) (4)

Comparison of the Two Formulations. The two formulations functionally appear

very similar; however, they are interpreted differently and also yield different results. The

primary difference is the variable used on the vertical (Y) axis as the cost value. Let's
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define Y, as the cost of unit X and Y.x as the average cost of X units. For the cumulative

average formulation, the Y- is believed to be appropriate, whereas the Yx is used in the

unit formulation (18:303). Both formulations model the fact that costs decrease by a

constant percentage between doubled quantities (2: Sec 7, 10) which translate into linear

functions when plotted on log-log grids; however, when both are calculated from the same

data and plotted, both cannot be linear simultaneously (18:303). A mathematical table and

graphs illustrate this point.

Suppose A = $1,000 and the Slope = 80%. The table that follows (Table 1) shows

the calculated costs under both formulations:

Table 1 Comparison of Cumulative Average and Unit Formulations

Cum Avg Formulation Unit Formulation
(80% Slope) (80% Slope)

Cure Avg
Unit # Cost Unit Cost Cum Avg Cost Unit Cost

1 $ 1.000 $ 1.000 $ 1.000 $ 1.000
2 $ 800 $ 600 $ 900 $ 800
3 S 702 $ 506 $ 834 $ 702
4 $ 640 $ 454 $ 786 $ 640
5 $ 596 $ 418 $ 748 $ 596

6 $ 562 $ 392 $ 717 $ 562
7 $ 534 $ 371 $ 691 $ 534
8 $ 512 $ 355 $ 668 $ 512

9 $ 493 $ 341 $ 649 $ 493
10 $ 477 $ 329 $ 632 $ 477

Under the cumulative average formulation, note the cumulative average cost

declines by a constant percentage between doubled quantities; however, when converted

to incremental unit costs, the percent decline is non-constant. Under the unit formulation,
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the reverse holds true, i.e., the unit formulation shows the constant percentage decline

between doubled quantities while the cumulative average shows a non-constant

percentage decline.

Figure 4 and Figure 5 illustrate these concepts graphically. Figure 4 plots the data

from Table 1 shown under the cumulative average formulation while Figure 5 plots the

data from Table 1 shown under the unit formulation. On Figure 4, note the cumulative

average function is linear while the incremental unit cost is curvilinear. Figure 5 shows the

reverse relationship where the unit formulation function is linear while the cumulative

average function is curvilinear. Additionally, given the same slope and unit 1 cost, note

the cumulative average function is always above the unit function except at unit 1 where

they are equal. This relationship is often mistaken to imply that an estimate would be

higher if the cumulative average formulation was selected over the unit formulation. If lot

costs were computed from the information in Table 1, the cumulative average formulation

lot costs would fall below the unit formulation lot costs. For example, if Lot #1 consisted

of units 1-4, then total lot cost under the cumulative average formulation would be $2,560

whereas the total lot cost under the unit formulation would be $3,142. As a result, the

cumulative average formulation lot costs are $582 less than the unit formulation lot costs.
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Selected Formulation

Since most of the DOD and industrial applications today use the unit formulation

(7:59, 13:8, 15:14 Feb 94, 26:38), this thesis effort will concentrate solely on the unit

formulation.

Fixed Costs

Under the standard learning curve formulation (as discussed in the history of

learning curves), only variable costs are used in calculation of the unit cost. This has one

of two implied meanings: 1) all costs, including overhead, are variable or 2) fixed costs

are not included in the computation of unit cost. The second implied meaning basically

means variable and fixed costs are calculated separately then added for a total cost

estimate.

A problem with the first implied meaning is not all overhead costs are variable in

the short term or, in many instances like plant and equipment, in the intermediate term.

According to Balut, Frazier, and Bui, "the assumption thet all costs are variable is no

longer acceptable. Almost one third of total cost is fixed and the proportion is increasing"

(5:3). The first implied meaning appears to be the way fixed costs are considered, since

learning has been defined in very broad terms to include areas beyond the reduction in

costs due to the gaining of experience through repetition. This broad definition of learning

includes savings due to improvements in facilities and equipment as well as better

management, planning, and control. Facilities, equipment, and management are

traditionally classified as fixed costs (11:35).
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Treating fixed costs as variable costs causes greater uncertainties in the total cost

estimates. Traditional learning curve theory states as the quantity produced doubles, the

recurring (variable) cost decreases at a constant rate. In no literature reviewed has the

behavior of fixed costs been said to exhibit this same behavioral pattern. Since the

behavior of fixed costs differs from the behavior of variable costs, including fixed costs

into traditional learning curve calculations would create uncertainty in the accuracy of the

calculations.

One of the effects fixed costs would have on learning curve calculations is that as

the quantity of a production lot increases, the fixed cost per unit decreases within the

production lot. This happens since average fixed cost is determined by dividing the total

fixed cost incurred by the quantity of the production lot. This effect has nothing to do

with learning.

Distribution of Fixed and Variable Costs

A problem still exists with how one categorizes costs between fixed and variable

costs and how to account for fixed costs within the learning curve formulation. Balut,

Frazier, and Bui stated "...industry accounting systems do not provide visibility into fixed

costs. This cost component is estimated, even by the accountants within the firm" (5 1).

They follow by providing a typical cost breakdown of a typical contractor:

39% -- Direct Materials (all variable)
16% -- Direct Labor (all variable)
45% -- Overhead (both fixed and variable) (5:2)

The question is how to break the 45% overhead cost into fixed and variable

categories.
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Distribution of Fixed and Variable Overhead. According to Balut, Frazier, and

Bui, two methods can be used to do this. The first method is the account classification

method (ACM). ACM is best applied by contractors and requires a thorough

understanding of the particular manufacturing operation and how the individual accounts

mirror these activities. Typically, the government does not have the access, time, or

expertise to use this method. Additionally, the contractors consider the results of the

ACM method proprietary information (5:2).

The second method is through regression analysis. An equation is hypothesized to

model the distribution of overhead costs into its fixed and variable components. This

method is applied by both the government and contractors alike. The problem the

government has is its inability to compare its regression results with either the contractor's

ACM results or their regression results to validate the government's regression equation.

Once again, the contractor's regression equations and results are usually classified as

proprietary data and not made available to the government. This data restriction severely

hampers government analysts from accurately breaking the overhead portion of total cost

into its two components.

Another Balut article broke overhead costs into three categories: 1) variable to

include employee benefits, payroll taxes, and other production-related indirect costs tied

to the number of direct laborers; 2) fixed to include depreciation, amortization, insurance

and other costs that do not vary with activity rate; and 3) semi-variable to include utilities

(4:64). A prime example of how semi-variable costs present a problem is electricity. A

certain amount of electricity is needed regardless of production, but as production

increases -- electrical usage increases. The problem is: how is the electric bill allocated
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across the company? This problem can be overcome if changes in total overhead expenses

are observed with respect to activity rate within the plant (overall plant production) rather

than functionally (where the expenses actually occurred within the plant) (4:65).

Models for Treating Fixed Costs

The treatment of fixed costs in learning curve calculations has received more

consideration recently. A possible reason for this attention is research has indicated the

percentage of fixed costs to total costs has increased as industry moves towards

automation. For airframe manufacturers, the fixed component of cost has risen from 19%

two decades ago to 33% in 1991 (5:3).

Today, government analysts are concerned that as the military draws down and

military weapon system production declines, the fixed overhead component of cost will

continue to increase as a percentage of total costs (6:2 Sep 93). This view is comparable

to that expressed by Gansler in a 1980 study of the defense industry. Gansler predicted

that as defense spending decreased, weapon system overhead costs and total costs would

increase. Further, Gansler contended that high levels of excess capacity drive up overhead

costs (10:226).

Several methods have been hypothesized to include fixed costs in the learning

curve models. The first group of methods (overhead cost models) uses the traditional unit

formulation to estimate variable costs and a separate equation to estimate overhead costs.

Total costs are determined by summing the variable and overhead costs.

The second group of methods (total cost models) includes both the overhead and

variable cost components in a comprehensive model to estimate total cost-
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Overhead Cost Models. 1) Kaplan proposed a basic linear model for distribution

of overhead costs based on a single cost driver, direct labor hours (DLH) (16:90). The

basic model was:

OH = bo + b,*DLH (5)

where

OH = overhead
b0 = intercept (fixed cost)
DLH = direct labor hours
b, = parameter

Kaplan found one of the drawbacks to the basic model was it did not allow for

changes in fixed overhead costs found in many businesses. His solution for this problem

was inclusion of additional variables. One possible addition is a categorical variable for

jumps or shifts in fixed overhead costs during the estimation period due to increased

supervisory personnel, increased charges due to new machines, or expansion of the floor

space (16:91). A second possible addition is a time indexed variable to account for steady

increases in fixed overhead costs (16:92). The two adjusted models follow:

Basic model adjusted for a shift in fixed overhead costs.

OH = b,, + b,*DLH + b2*JUMP (6)

where

OH = overhead
Sb0  = intercept (fixed cost)
DLH = direct labor hours
JUMP = categorical variable(= 0 for no JUMP)

(= 1 for JUMP)
b, b: = parameters

Basic model adjusted for a steady increase in fixed overhead costs.
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OH = b. + b,*DLH + bz*TLME (7)

where

OH = overhead
b0 = intercept (fixed cost)
DLH = direct labor hours
TIME = time indexed variable (by month, quarter, year, etc.)
b, b2 = parameters

The fixed overhead cost would be calculated in the following manner:

For the JUMP model

FOH = b. + b2*JTJ P (8)

For the time indexed model

FOH = b, + b2*TIME (9)

2) Balut, Frazier, and Bui: Their study was an extension of Kaplan's model by

making the model sensitive to the stock of capital facilities and equipment as well as direct

labor. Also, it redefines the fixed component of overhead to include the capital measure

and pools the cross-sectional and time series data to produce an industry wide model

rather than a contractor specific model of overhead costs (5:8-9). Their model follows:

Y = a + b*K + c*DC + e (10)

where

Y = plant-wide overhead
K = net book value (used as proxy for value of capital)
DC = direct costs
a = intercept
b and c = parameters
e = error term with mean zero and a constant variance (used to

accommodate measurement error and the unsystematic effects of omitted
variables)

From the above equation, the variable and fixed portions of overhead are defined

as follows:
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variable overhead = c*DC (11)

fixed overhead = a + b*K (12)

fraction of overhead that is fixed = (a + b*K)/Y (13)

fraction of total business that is fixed = [(a + b*K)/Y]*[Y/total business] (14)

Both of the preceding models allow overhead costs to be estimated separately and

then added to the estimated direct variable costs to estimate the total cost.

Total Cost Models. 3) Balut: He proposed a two step approach to cost estimating

(4:65). First, use the learning curve which assumes fixed costs are 100% variable.

Second, correct for the erroneous assumption that all costs are variable through use of a

rate adjustment factor which accounts for the redistribution of fixed overhead across the

new activity levels within the plant. That rate adjustment factor is (4:66):

Fi = [Qoldi/Qnewi]b*P*R + (1 - P*R) (15)

where

i = lot number
Fi = factor used to adjust estimate for lot i derived in step one
Qoldi = quantity of aircraft in lot i in the basic service program

Qnewi = quantity of aircraft in lot i in the alternative program

b = Darameter
P = fraction of price represented by overhead
R = fraction of overhead that is fixed in the short term

Lot quantity is used as a proxy for lot direct cost.

The unit cost equation would be as follows (4:70):

Y = A*Xb*Fi (16)
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where

Y = unit cost
A = first unit variable cost
X = midpoint of lot to be estimated
b =slope coefficient
Fi = as defined above

4) SAF/FMC: This method was briefed by SAF/FMC in 1993.

Y = F/Q + A*Xb + e (17)

where

Y = unit cost
F = fixed costs per lot
Q = quantity produced per lot
A = first unit variable cost
X = lot plot point (of each lot)
b = slope coefficient
e = error term with mean zero and a constant variance (used to accommodate

measurement error and the unsystematic effects of omitted variables)

SAF/FMC used simulated data to test the accuracy of, .-heir model against the

traditional learning curve model and the production rate learning curve model. The

SAF/FMC study showed the learning curve model with a fixed cost component had a

higher adjusted coefficient of determination (adjusted R-squared) and did a better job of

predicting future lot costs (27:14,16-19).

5) Moses: In a 1990 article, Moses included a fixed cost component directly in his

empirical model (21:16). His empirical model not only includes a production rate term,

but adds a company-wide activity rate and an industry utilization rate. Instead of adding

the fixed cost component as in the SAF/FMC model, he multiplied the term as follows:

Y = Axb*pRdCRfIRg*ehFC (18)
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where

Y = unit cost
A = first unit variable cost
X = lot midpoint
PR = production rate
CR = company-wide activity rate
IR = industry utilization rate
FC = fixed capacity cost (fixed cost burden -- measured by firm-wide

property, plant, and equipment during production of the lot divided
by the average property, plant, and equipment during the years of
production on the program)

e = constant (natural logarithm z- 2.7183)
b, d, f, g, h = parameters

Moses found the significance of the fixed cost component to vary dependent on

other factors. He tested his model at three fixed cost burden rates: 15%, 33%, and 50%.

The fixed cost component was significant when the fixed cost burden was high (33% and

50% burden rates) and when future production was low or decreasing (22:24).

Model Summary/Selection

The results reported from SAF/FMC and Moses indicate that the inclusion of a

fixed cost component is necessary for increasing the accuracy of learning curve

calculations. Moses' finding that the fixed cost burden became significant at 33% with low

or decreasing production levels was particularly interesting in light of the work of Balut,

Frazier, and Bui and others who reported the fixed component of cost for airframe

manufacturers is around 33%•. Furthermore, the DOD is undergoing a drawdown and its

contractors are experiencing lower producti,,n rates and lower future demand for weapon

systems. This could drive up the fixed component of total costs.
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Chapter Summary

This chapter defined learning curve theory, explored a brief history of learning

curves, examined mathematical expressions of the learning curve, reviewed the two

common log-linear formulations, and selected the more widely used log-linear formulation

for this thesis effort. Additionally, this chapter explored the fixed component of cost, its

functional treatment, models for treatment of fixed costs, and the model most relevant for

further investigation.

30



III. Methodology

Chapter Overview

This chapter discusses the methodology to meet the research questions specified in

Chapter 1. Specifically, this chapter explains the three areas of research: 1) interview

process, 2) comparison of correct/incorrect parameter development and application when

estimating total production run costs, and 3) a comparison of the cost prediction

variability between the standard unit learning curve model (AXb) and the SAF/FMC

model (F/Q + AXb) when fitted to total cost lot data. Within each of these research areas,

the general processes are outlined.

Interview Process

Personal interviews were conducted with cost analysts at Wright Patterson AFB to

address the first three research questions specified in Chapter 1. The primary purpose of

the personal interviews was to sample current cost estimating practice to verify that a

hypothesized problem with learning curve slope parameter development or application

indeed existed. The results of the personal interview process are included in Chapter 4.

Comparison of Correct/Incorrect Parameter Development and Application

Since the interview process yielded a wide variety of methods for using the

standard unit learning curve model (AXb) when estimating total production run costs, the

question arose as to whether or not these different methods made a difference when

compared to the correct development and correct application of the slope parameter when
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computing total production run costs. To address this question, the following process to

investigate Research Questions 4-6 from Chapter 1 was developed.

The four possible combinations of developing and applying the slope parameter,

summarized in Table 2,

Table 2 Combinations of Correct/Incorrect Slope Development & Application

Abbreviation Slope Development Slope Application to
for Cost Estimate
Combination
CC Correct Correct
CI Correct Incorrect
IC Incorrect Correct
II Incorrect Incorrect

were simulated in the following manner. First, the correct and incorrect slope coefficients

were developed. After the slope coefficients were developed, the correctly and incorrectly

developed slope coefficients had to be applied correctly and incorrectly. Correct and

incorrect application was based on application of the slope coefficient to theoretical first

unit (T I) values which contained variable and total costs, respectively.

The simulation process resulted in four different estimates for total cost for each

treatment, with each treatment being a unique combination of factors. The data simulation

process is explained in detail in following paragraphs.

Correct Slope Development. For correct slope development a number of steps

were taken as illustrated in Figure 6. Each of these steps will be explained in turn
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Figure 6 Correct Slope Development Before Correct and Incorrect Application
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Production Run Data Simulation. In order to simulate production run data,

specific factors and levels had to be selected. Those factors and levels selected are

summarized in Table 3. Additionally, the number of production runs, number of units

within the production run, number of lots within the production run, first unit cost, and

level of dispersion had to be selected prior to data simulation.

Table 3 Simulation Factors and Levels

Level I Level 2 J Level 3
Slope 75% Slope 85% Slope 95% Slope
Lot Size Profile Increasing Equal Decreasing

Variable Cost Data. The SAS system was used to simulate variable

cost data (Steps 1 and 2 from Figure 6) for 100 production runs for three unit formulation

learning curves (AXb) with 75%, 85%, and 95% slopes; 480 units; first unit cost of

$25,000; and a normally distributed random error.

This variable cost data simulation yielded three data files summarized in Table 4.

A sample program is located in Appendix A (pg 92) with notes regarding modifications

for each treatment.

Table 4 Three Variable Cost Simulation Programs and Output Data Files

Prog'ams Output Data File [Data File Description
NORMALI.SAS NORMALI.DAT 75% Slope, 48000 Observations
NORMAL2SAS NORMAL2DAT 85% Slope, 48000 Observations

NORMAL3.SAS NORMAL3 DAT 95% Slope, 48000 Observations
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The variable cost data was generated in the log-linear state and then transformed

to unit space with a logarithmic transformation. The following formula was used to

generate the data:

LNY = A + B*LNX + C*Z (19)

where

LNY = natural log(In) of the unit variable cost
A = ln($25,000) •. 10.12663 ($25,000 is the first unit variable cost)
LNX = natural log of the sequential unit number 1-480
B = In(slope in decimal form)/ln(2)
C = standard deviation; a constant representing mean estimating error
Z = RANNOR(seed)

The last term in Equation 19, C'Z, was used to introduce variability in the

simulated data. A standard deviation of 0.20 was chosen for C. The SAS function for

normal random error terms, RANNOR(seed), was used in consonance with C. The

RANNOR(seed) generates a value from a normal distribution with a mean of zero and a

standard deviation of one. The seed is nothing more than an arbitrary number to start the

random number generation process (28:589).

Under the normal distribution, approximately 99.7% of the data should fall within

3 standard deviations of the mean (8:150), so the range of-3C to +3C should cover the

vast majority of data. With a standard deviation of .20, the range would be from -.60 to

+.60 in log space or .548 to 1.822 in unit space. Since the error term becomes a

multiplicative error term in unit space, the first unit cost would range from ($25,000*.548)

to ($25,000*1. 822) or from $13,720 to $45,553. The actual range based on program runs
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(Steps I and 2 from Figure 6) was from $13,286 to $41,010 with a mean first unit cost of

$25,210.

Segregation of Production Run Data Into Lot Data. With the variable cost

data generated from the tasks above, this data had to be broken out into lot data for each

of the 100 production runs (Step 3 from Figure 6). Lot sizing programs were written to

breakout this cost and unit data into lots for each production run (See Appendix A, pg

93).

Twelve lots were formed for each production run. This translated into 10,800 lot

arrays. Each lot array contained six elements as follows:

Element 1 = the cumulative units for production run
Element 2 = the cumulative total variable cost for production run
Element 3 = the total lot cost (includes variable costs only)
Element 4 = the algebraic lot plot point
Element 5 = the lot average cost (includes variable costs only)
Element 6 = the lot size.

Lot Size Profiles. The units and their associated costs for each

production run had to be grouped into 12 lots. This was accomplished using an

increasing, equal, and decreasing lot size profile to coincide with the beginning, middle,

and end stages of production, respectively (Step 3 from Figure 6).

The lot size was determined in the following manner:

lot size = Ci + (Si*RANUNI( seed)) (20)

where

Ci = constant for lot i
Si = scaling factor for lot i
RANUNI (seed) = a number from the uniform distribution between zero and one.
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The scaling factor and constants were changed to allow for increasing and

decreasing lot sizes where appropriate. To ensure cumulative units did not exceed 480,

the decreasing lot size program used conditional statements for lots 10, 11, and 12. In

contrast, the increasing lot size program was structured such that the cumulative units

through lot 11 did not exceed 480. For the equal lot sizing program, the scaling factor

and RANUNI terms were removed and Ci was set equal to 40, thus each of the 12 lots

contained 40 units per lot. The lot size structure is included in Appendix A (pg 107, 108).

Lot Plot Point. Within each production run, the algebraic lot

midpoint was computed for each of the lots and added to the cumulative number of units

in the production run to determine the true lot plot points. This algebraic midpoint

computation procedure provides greater accuracy than heuristic lot midpoints.

For example, the following procedure within the lot sizing program was used to

determine the algebraic lot plot point for the tenth lot (30:36):

LOT[ 10,4] = 0;
Z = LOT[10,1] - LOT[9,1],

DOI= I TO Z,
DUM = LOT[10,4] + ((I + LOT[9,1])**B);
LOT[ 10,4] = DUM;

END;
LOT[10,4] = (LOT[ 10,4]/Z)**(1/B);

The above program started by initializing the array element (LOT[ 10,4]) for the lot

plot point. Next, it computed the size of the tenth lot by subtracting the cumulative units

through the ninth lot from the cumulative units through the tenth lot. Then the DO loop

computed the summation of the sequential unit numbers raised to the power of B of the

tenth lot. The last statement computed the X value using the previous calculations.
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Model Fitting. For each production run within a treatment, the standard

unit learning curve model was fit using linear least-squares-best-fit (LSBF). Before the

unit model could be fit, a production run data file to segregate the lot sizing output by

production run (Step 5 from Figure 6) was created. This program (see Appendix A, pg

109) created a data file which assigned a unique, sequential production run number to

each group of 12 lots and allowed analysis and model fitting by production run.

The linear LSBF technique was run on the SAS system using PROC REG with

each data point receiving equal weight (Step 6 from Figure 6). Before fitting, the non-

linear simulated data was converted to a linear form with the following logarithmic

transformations:

y = In(Y) (21)

x = ln(X) (22)

where

Y = the average total cost of a production lot
X = the algebraic lot plot point
In(variable) = the natural logarithm function

The actual PROC REG statement required in SAS (29:Ch 28)was as follows:

PROC REG;
MODEL LNAVCUST = LNLPP;

Slope Determination. For correct slope development, the model fitting

used only lot vairiable costs within each production run in order to compute the slope

coefficient for each production run.

After model fitting, the mean of the 100 individual production run slope

coefficients within a treatment was computed using the PROC MEANS statement in SAS
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(Step 8 from Figure 6). This mean slope coefficient, which was correctly developed since

it used variable cost data only, was then used as the correctly estimated slope coefficient

for estimating total cost for a new production run (Appendix A, pg 114).

t Test for Slope Coefficient. With an average slope coefficient for

each treatment, a t test was performed for each average slope coefficient (Step 10 from

Figure 6). According to Ostle and Mensing (25:114), several factors require consideration

when establishing a test procedure. Those factors are as follows:

I) The nature of the experiment that will produce the data must be defined.
2) The test statistic must be selected. In other words, the method of analyzing the

data should be specified.
3) The nature of the critical region must be defined.
4) The size of the critical region (i.e., a) must be chosen.
5) The size of the sample must be determined.

In this case, the theoretical population was known, i.e., 75%, 85%, and 95% slope

with no dispersion. Furthermore, when dispersion was included, it was known that the

dispersion would be normally distributed since the simulation included a normal

distribution random number generator, i.e., RANNOR(SEED).

In light of this, the nature of the experiment was simply a test of the sample mean

of slope coefficients from a normal population being equal to the population mean. The

two sided t test was selected for the test statistic. Since the sample mean could be higher

or lower than the population mean, the test had to take into account reject regions on both

sides of the population mean. The alpha value (c) was 0.05. The sample size (n) was

100. The experiment was developed as follows:

H: p. = p, where .L) is the population mean and g, is the sample mean
A: p,
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Test Statistic: t = (s /2) where s is the sample standard deviation

and n is the sample size

Decision Rule: If ItJ < t* then cannot reject null hypothesis, else reject, where from
the t tables t* = t(975X99)

The results are summarized in Chapter 4-

Incorrect Slope Development. For incorrect slope coefficient development, the

steps taken were the same as for the correct slope development process with one major

exception and limited minor exceptions.

The major exception was that the slope coefficients were developed from total cost

lot data instead of variable cost lot data. This exception is illustrated as an addition of

Steps 3 through 6 in Figure 7 below. These four steps were included to add fixed costs to

the lot data before the lot data was fit using LSBF.
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?= Wildcard for One Character

Production Run Total Variable
Simulate Production Run Data for 100 Cost Generation via LEARN

Production Runs per Slope with Program (No Dispersion)
Dispersion 3

Three Programs: NORMAL?.SAS
y

LEARN Program Total

Three Outputs from Variable Cost Output for 480

NORMAL*.SAS Unit Production Run Under 3

Programs Slopes (3 Outputs)
(NORMAL?.DAT)

2.

27 Lot Sizing Programs for 27
Combinations (3 Slopes, 3 Excel Spreadsheet To Compute Lot
Fixed Cost %, 3 Lot Sizing Fixed Costs for 9 Combinations

Profiles) (3 Slopes, 3 Fixed Cost %)
(?LTGEN?'.SAS) (LOTFC.XLS)

7 5

Output from Lot Sizing E
Programs Excel Spreadsheet for each

(?LTGEN??.DAT) with Lot Fixed Costs for each
8 ', of the 9 Combinations

6

27 programs to fit Unit Model
by production run to output
from lot sizing programs _ _-..

(COMB7.??SAS) ....
10 

Production run
"numbering scheme to

I segregate different

Slope Coefficient Per Production production runs

Run for Unit Model (100 Slope (PRDRUN.DAT)9
Coefficients per program, 2700 total

slope coefficients) written to
permanent data sets

(PARAMS.?UNIT??)
11

2 Programs to take an average slope
coefficient for each -combination and

write them to two permanent data sets
(UNITI?.SAS)

12

___t Test of Average, Incorrectly
Average Slope Coefficient For Each Developed Slope Coefficients

Combination (9 average slope •. from Population Mean
coefficients per data set) written to (Excel Spreadsheet)

two permanent data sets 14
(PARAMS.TESTI?T)

13

Figure 7 Incorrect Slope Development Before Correct and Incorrect Application
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Fixed Cost Data. Using the LEARN program by Hutchison (12:Ch 4)

(Step 3 from Figure 7, see output in Appendix A, pg 105), three unit formulation learning

curves with 75%, 85%, and 95% slopes; 480 units; first unit cost of $25,000, and no error

term were run in order to compute the production run total variable costs.

Under the assumption that these total variable costs represented 80%, 65%, and

50% of total costs, total fixed costs per production run were computed using an Excel

spreadsheet (Steps 5 and 6 from Figure 7, see output in Appendix A, pg 104). For

example,

if
Total Fixed Costs (TFC) = 20% of Total Costs (TC)
Total Variable Costs (TVC) = 80% of TC

then
TC = TVC/.8

by substitution,
TFC = .2*(TVC/.8)

simplifying the above equation,

TFC =.25 * TV C

Some problems associated with computing fixed cost for production runs include a

wide variety of accounting classification methods used by different firms as well as

different classifications of fixed costs between those incurred on a per lot basis and those

incurred on a per time basis such as rent or utilities. This analysis used a simplifying

assumption that each lot has the same fixed cost, irrespective of lot size. The fixed costs

modeled in this experiment include costs such as setup, tooling, and ordering costs. In

light of this, the total computed fixed costs per production run on the Excel spreadsheet

were divided by 12 to compute the fixed cost per lot.
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Lot Total and Average Cost. In the lot sizing programs, total cost per lot

was determined by computing the variable cost of the lot and adding the fixed cost per lot.

For example, the total lot cost for the tenth lot array was determined using the following

procedure.

LOT[10,3] = LOT[10,2] - LOT[9,2] + LFC

where

LOT[10,3] = the array element for total lot cost of the tenth lot
LOT[ 10,21 = the array element for cumulative variable cost for the tenth lot
LOT[9,2] = the array element for cumulative variable cost for the ninth lot
LFC = the lot fixed cost for the tenth lot.

LOT[ 10,3 ] was then divided by the lot size to compute the average lot cost (lot

array element 5, LOT[10,5]) which was used by the model fitting programs.

Slope Determination. The mean slope coefficient was determined in the

same manner as that for the correctly developed case. The t test for the mean of the

sample being equal to the mean of the population was also applied to the incorrectly

developed slope coefficients. These results are also included in Chapter 4. This mean

slope coefficient, which was incorrectly developed since it used total cost lot data, was

then used as the incorrectly estimated slope coefficient for estimating total cost for a new

production run.

One problem initially occurred when it came to incorrectly calculating the slope in

the case of decreasing lot sizes. In only three of the nine cases was the incorrectly

calculated slope coefficient negative as one would expect. After examination of the data,

it was determined that the reason for the positive slope coefficients was the inclusion of

fixed cost data before fitting the models.

43



Simply stated, as lot size decreased, average fixed cost per unit in each successive

lot increased as one would expect since fixed cost per lot is fixed. This increase in fixed

cost outweighed the decrease in variable cost due to learning. This caused the lot average

total cost to have an increasing trend which resulted in a positive slope. Figure 8 shows a

graphical representation of this trend.
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Figure 8 Graphical Example of Incorrect Slope Development Which Yields Positive
Slope due to Increase in Average Fixed Cost Being Greater Than Decrease in

Av~rage Variable Costs (Example used 85% Slope, 35% Fixed Cost Percentage)

Correct Slope Application for Total Cost Estimates. For the correct slope

applications, both the correct and incorrect slope parameters from the slope development

stages above were used as shown in Figure 9. Correct slope application means that the

developed slope (whether correct or incorrect) was applied to a TI that contained just
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variable costs. If the developed slopes (whether correct or incorrect) were applied

correctly, fixed costs would have to be added in after total variable costs were computed

in order to compute total production run costs. This fixed cost addition was accomplished

with a factor.

Since new systems rarely have the same T I as previous systems, $40,000 was

chosen as the T I value for the new production. For an actual system, the T I value would

be calculated using a CER or other method.
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Slope Correctly Developed Slope Incorrectly Developed

Slope Correctly Applied Slope Correctly Applied
(CC) (IC)

Average Slope Coefficient For Each Average Slope Coefficient For Each

Combination (9 average slope Combination (27 average slope
coefficients per data set) coefficients per data set)
(PARAMS.TESTCCT) (PARAMS.TESTICT)

1. 5

One program to run each of the above One program to run each of the above9 slopes down a 480 Unit Formulation27Oepormtrueahfteabv
9slopes down a f48 ,00 UnitwFormultic 27 slopes down a 480 Unit Formulation Curve
Curve with a Ti of $40,000 which with a T1 of $40,000 which

yields 9 production runs for yields 27 production runs for
Total Variable Costs Totl Vrial C os

(UNITCC.SAS) Total Variable Costs
2C (UNITIC.SAS)
2 6

One program to multiply each of the One program to multiply each of the
above 9 production total variable cost above 27 production total variable

production runds by a factor to cost production runs by a factor to
incorporate fixed costs. Yields 27 incorporate fixed costs.
unique total cost production runs Yields 27 unique total cost

since there were 3 fixed cost factors production runs
for each of the 9 production runs (UNITIC.SAS)

(UNITCC.SAS) 7

Permanent Data Set containing the Permanent Data Set containing the
slope coefficient, total production slope coefficient, total production

run costs, std deviation, and run costs, std deviation, and
standard error for each standard error for each
combination (Total of 27 combination (Total of 27

combinations) combinations)
(PARAMS.UNITCCT) (PARAMS.UNITICT)

4 8

Figure 9 Correct Slope Application Combinations

For example, under the correct application, both correctly and incorrectly

developed slopes from above were applied to a unit formulation learning curve model with

a first unit variable cost of $40,000 and 480 units (Steps 2 and 6 from Figure 9). This

calculation yielded a total variable cost which was multiplied by a factor coinciding with
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the fixed cost percentage (Steps 3 and 7 from Figure 9). The factors were 1.25 for 20%

fixed cost, 1.5385 for 35%, and 2.00 for 50%.

Incorrect Slope Application for Total Cost Estimates. For the incorrect slope

applications, both the correct and incorrect slope parameters from the slope development

stages above were also used as shown in Figure 10 below. Incorrect slope application

means that the developed slope (whether correct or incorrect) was applied to a first unit

cost that contained both variable costs and fixed costs. If the developed slopes (whether

correct or incorrect) were applied incorrectly, no adjustments would have to be made to

account for fixed cost since the first unit cost is already adjusted to include fixed costs.

Slope Correctly Developed Slope Incorrectly Developed
Slope Incorrectly Applied Slope Incorrectly Applied

(Cl) 1I)

Average Slope Coefficient For Each Average Slope Coefficient For Each
Treatment (9 average slope Treatment (27 average slope
coefficients per data set) coefficients per data set)

(PARAMS.TESTCIT) (PARAMS.TESTIIT)
1. 4.

One program to run each of the above One program to run each of the above
9 slopes down a 480 Unit Formulation 27 slopes down a 480 Unit Formulation
Curve with three uniique Tls for each Curve with a unique TI for each slope.

of the 9 slopes. Yields 27 unique Yields 27 unique
Total Cost Production Runs Total Cost Production Runs.

(UNITCI.SAS) (UNITII.SAS)
2 5

Permanent Data Set containing the Permanent Data Set containing the
slope coefficient, total production slope coefficient, total production

run costs, std deviation, and run costs, std deviation, and
standard error of the estimate for standard error of the estimate for

each treatment (Total of 27 each treatment (Total of 27
treatments) treatments)

(PARAMS.UNITCIT) (PARAMS.UNITIIT)
3 6

Figure 10 Incorrect Slope Application Combinations
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To calculate the appropriate theoretical first unit cost, the lot fixed cost was

calculated in a similar manner as described above in the incorrect slope development

process; however, $40,000 was used as the first unit variable cost for the new production

run instead of $25,000. This process calculated the theoretical population total fixed costs

(see Appendix A, pg 127). For increasing and decreasing lot profiles, the mean of the 100

production run lot sizes was used to determine the lot size profile. Then the LEARN

program was used to fit the total cost data to determine the theoretical first unit cost for

the incorrectly applied treatments.

These adjusted first unit costs were used with the developed slopes (whether

correctly or incorrectly developed) to estimate total costs for a 480 unit production run

(Steps 2 and 5 from Figure 10).

Test on the Total Cost Estimates. Since only one new production run was

estimated with the developed slope coefficients, the tests available for the estimate were

limited. The test ran on the total cost estimate consisted of determining the magnitude of

the difference between the correctly developed and applied slope parameter with the

remaining three cases. The correct/correct case was used as the baseline because it is the

theoretically correct process.

In order to compare the correct/correct case with the other three cases, the total

cost estimates from the slope application process (described above) were entered into a

spreadsheet. Next a measure of dispersion needed to be calculated. This step called for

some assumptions. Since the slope coefficients were taken from the 100 simulated

production runs, the standard deviation of total cost for the 100 production runs was
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assumed to be an approximation of the standard deviation of the total cost for the new

system.

This was calculated by using the total cost for the 100 production runs for the

correctly applied unit formulation (Appendix A, pg 110). PROC MEANS in SAS was

used to calculate the standard deviation of total cost for the 100 simulated production

runs. Since the standard deviation was in dollars for a system with $25,000 theoretical

first unit value, they had to be put into a format to be used for a system with a theoretical

first unit value of $40,000. This was accomplished by converting the dollar value into a

percent value. This was done because multiplicative models have a multiplicative error

term instead of an additive error term. In other words, the error at any point will be a

certain percentage away from the regression line in unit space, not a constant dollar

amount away (see Figure II and Figure 12 for a graphical illustration of multiplicative and

additive error terms).
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As Figures 11 and 12 show, the deviation is greater at larger values for the

multiplicative case when compared to the additive case. The opposite is true for smaller

dollar values. At the mean (50), the deviation is the same. Under this assumption, the

percent standard deviation was calculated by dividing the standard deviation by the mean

of the total cost estimates. Now that the standard deviation was in a percent error format,

this percentage was multiplied by the total cost estimate for the new production run to

determine the dollar value of one standard deviation for the estimated total cost value.

Once a dollar value of one standard deviation was determined, the fact that 99.7% of the

values for a normal population fall within three standard deviations of the mean (8:150)

was used to determine if any of the other estimates (correct/incorrect, incorrect/correct,

and incorrect/incorrect) fell within three standard deviations of the correct/correct case.

The results of this test are included in Chapter 4.

The tests of the total cost estimates concluded the research related to the second

research area. The remainder of the chapter focuses on the third research area, i.e., a

comparison of the cost prediction variability between the standard unit learning curve

model (AXb) and the SAF/FMC model (F/Q + AX") when fitted to total cost lot data.

Comparison Between Standard Unit Model and SAF/FMC Model

Since the standard unit learning curve model was insufficient when used with total

cost lot data, an obvious question would be how it compares to a model that explicitly

incorporates a fixed cost component. To address this question and Research Questions 7-

9, two factorial experiments were designed and the results were analyzed.
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Experimental Design. The design consisted of two balanced design, fixed effects

factorial experiments. A factorial experiment is one where the researcher is interested in

how two or more factors affect a measured response (20:529).

Table 5 lists the three factors (independent variables) and levels per factor for the

first factorial experiment. In total, 18 treatments were considered in the first factorial

experiment.

Table 5 First Factorial Experiment Factors (Independent Variables) and Levels
Fixed Cost % Fixed at 35%

Level [ Level 2 Level 3
Model (Factor 1) AXb (Unit) F/Q + AXb (SAF) N/A
Lot Size Profile (Factor 2) Increasing Equal Decreasing
Slope (Factor 3) 75% Slope 85% Slope 95% Slope

Table 6 lists the three factors (independent variables) and levels per factor for the

second factorial experiment. In total, 18 treatments were considered in the second

factorial experiment.

Table 6 Second Factorial Experiment Factors (Independent Variables) and Levels
Slope Fixed at 85%

Level 1 [Level 2 Level 3
Model (Factor 1) AXb (Unit) F/Q + AXb (SAF) N/A
Lot Size Profile (Factor 2) Increasing Equal Decreasing
Fixed Cost % (Factor 3) 20% Fixed Cost 35% Fixed Cost 50% Fixed Cost

The purpose of the factorial experiments was to examine how each model
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(Factor 1) performed under different lot sizing profiles, slopes, and fixe6 cost percentages.

Performance, the dependent variable in the factorial design, was measured in terms of the

Mean Absolute Deviation (MAD) for that treatment. Lower MADs were judged to be

better than higher MADs since lower MADs are characteristic of a better fitting and better

estimating model.

The rationale for two factorial experiments instead of one joint 3*3*3*33 factorial

experiment was due to the dependency between the slope and calculated fixed costs in the

data simulation. In the simulation, production run fixed costs are derived from production

run total variable costs; however, production run total variable costs are a function of

slope when a constant TI across treatments is assumed. In light of this, the fixed cost is

dependent upon the slope, thus the two are dependent. By dividing the experiment into

two factorial experiments, this dependency between production run fixed costs and slope

was minimized.

Factorial Design. The factorial design was chosen since it allows for a

wide variety of conditions represented by the different factors and levels. Traditional

experimentation using "one-at-a-time" changes in factor levels while holding all other

factors and levels constant is extremely inefficient when there are many factors and levels

under consideration. Furthermore, "one-at-a-time" experimentation does not allow for the

assessment ofjoint factor effects (19:115). Since there are no a priori notions that

interactions among the factors do not exist, the factorial design is appropriate since it

provides for the investigation of those joint, interaction effects.
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Balanced Design. The experiments included a balanced design since the

number of MAD observations per treatment was equal, i.e., the sample sizes were equal.

Specifically, each treatment had 100 MAD observations which coincided with the 100

production runs for that treatment.

Fixed Effects. The experiments were fixed effects experiments since the

levels for each factor were explicitly selected in advance, i.e., the factor levels were not

randomly, but intentionally selected from a population of factor levels. The fixed effects

experiment, commonly referred to as a Model I experiment, only allows inferences for the

specific factor levels selected (19:300). The important implication of the fixed effects

experiment is that conclusions drawn cannot be generalized to factor levels which were

not specifically included in the experiment.

Experimental Flows. Figure 13 illustrates the experimental flow for both factorial

experiments.
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"= Wildcard for One Character

1 Simulate Production Run Data for ' h 3 Lot Sizing Programs for 3
100 Production Runs with 85% One Output from Combinations (85% Slope,

Slope with Dispersion and new Seed NORM2.SAS Program 35% Fixed Cost %, 3 Lot
Value ' (NORM2.DAT) Sizing Profiles)

One Program: NORM2.SAS 2, (LTGEN?28.SAS)
1 '__ 3

Output from 3 Lot Sizing Output from 27 Lot Sizing
Programs Programs

(LTGEN?2B.DAT) (?LTGEN??.DAT)
4 5

Production run '\ "_--_

3 programs to fit two models numbering scheme to 27 rorams to fit two models
(Unit and SAF) by production 4egregate different (Unit and SAF) by production

run to output from lot sizing • production runs "f
programs (PRDRUN.DAT) --A run to output from g ot sizing

(?2BCOMB.SAS) 6 (COMB???.SAS)
7 12

Mean Absolute Deviation Per Production Mean Absolute Deviation Per Production
Run for Each Model (100 MADs per model, Run for Each Model (100 MADs per

200 MADs per program) written to model, 200 MADs per program) written to
permanent data sets permanent data sets

(MAD.MAD?2B) (MAD.V??MAD)
8 r 13

1 Program which combines 3 MAD permanent 1 Program which combines 9 MAD permanent
data sets from above with 6 independent data sets from above which have 35%

permanent data sets containing an 85% Slope Fixed Costs Only into 1 permanent data set
from previous data simulation into 1 permanent

data set for use in PROC ANOVA program for use in PROC ANOVA program

(COMBINSL. SAS) 149 1

Summary MAD Data Set (200 MADs per set Summary MAD Data Set (200 MADs per
X 9 sets = 1,800 MAD observations) set X 9 sets = 1,800 MAD observations)

(MAD.IN2) (MAD.IN1)
10 15

\4

PROC ANOVA program to examine main PROC ANOVA program to examine mainPROCANOA prgra toexamne ainand interaction effects among model and
and interaction effects among model and other factors

other factors
(PROCANSLSAS) (PROCANFC.SAS) 1611 ______________________

PROC ANOVA output from PROC ANOVA output from
PROCANSL.SAS. Output usea to PROCANFC.SAS. Output used to

examine main, interaction, and factor examine main, interaction, and factor
level effects level effects

17 18

Figure 13 Total Cost Data Experiment Flow Chart
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Simulation of Production Run Data To begin the second factorial experiment,

production variable cost data was simulated for 100 production runs of 480 units each

(Step I from Figure 13) This data was simulated with an 85% slope and standard

deviation of 0 20 Production run variable cost data had already been accomplished for

the first factorial experiment (Step I from Figure 6)

The second factorial simulation was exactly the same as that used in the

NORMAL2. SAS program (refer to Step I from Figure 6) with the exception of the seed

value A new seed value was used to make the simulated production runs from

NORM2 SAS (Apr .. 'dix B, pg 128) independent from those simulated under

NORMAL2.SAS. A 4_pendence problem arose since the 85% slope was included in both

factorial experiments, as a factor level in the first and as a fixed value in the second

Fixed Cost Data Fixed cost data was added to the variable cost data from

NORM2 SAS using the same procedure as Steps 3-6 from Figure 7 Only the 35% fixed

cost data was added to the variable cost data since only 35% fixed costs were under

consideration This resulted in 3 combinations of an 85% slope, 35% fixed cost

percentage, and the three lot sizing profiles

Lot Total and Aver.age Cost This procedure was the same procedure used in

Step 7 from Figure 7 and explained under Figure 7

Model Fitting For each production run within a treatment, two learning curve

models were fit (Steps 7 and 12 from Figure 13) The standard unit learning curve model

was fit using linear LSBF By contrast, the SAF/FMC model was fit using a non-linear

LSBF technique in SAS
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Linear LSBF for Standard Unit Model. The linear LSBF was run on the

SAS system using PROC REG in the same manner used in Figure 6

Nonlinear LSBF for SAF/FMC Model. The SAF/FMC model was a

nonlinear functional model with an additive error term which could not be transformed to

an intrinsically linear form; consequently, the model required a non-linear LSBF technique.

To fit the SAF/FMC model, PROC NLIN (nonlinear regression) in SAS was used (9:169).

The NLIN procedure was more complex th.l the linear LSBF procedure as it required a

complete specification of the model, declaration of parameter names, starting values for

the parameters, and bounds for the parameters (29:676). The SAS program to fit the

SAF/FMC model was as follows:

PROC NLIN,
*INTIAL GUESS VALUES FOR PARAMETERS,

PARMS B=-.4 F=25000 A=25000,
MODEL AVUJNCST = F/LOTSZ + (A*LPP**B);
BY PRDRUN;
BOUNDS -1<=B<=0;
BOUNDS 0<=F<--900000;
BOUNDS O<=A<=200000;

A sample program which includes the Unit and SAF/FMC fitting procedures is

located in Appendix A (pg 135) with notes regarding modifications for each of the

treatments.

Bias Adjustment Factor. The Unit fitting procedure did not incorporate a

bias adjustment factor to account for the intercept bias encountered when converting from

log space to unit space. The SAF/FMC fitting procedure did not require a bias

adjustment factor since the fitting was performed in unit space.
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MAD. For the factorial experiments, MAD was used as the measured response

(dependent variable) for each treatment (unique combination of factor levels). MAD is

simply defined as an average of absolute errors (deviations) between predictions and

actuals, i.e., the sum of absolute errors divided by the number of errors.

MAD was used as the dependent variable since it measures variability instead of

bias (17:657). Additionally, it is less sensitive to large forecast errors than MSE since

MSE squares each error (24:58).

COMBINSL.SAS (Appendix B, pg 139) combined the three MAD permanent data

sets from Step 8 of Figure 13 with six MAD permanent data sets from Step 13 of Figure

13. The three MAD permanent data sets were based on treatments with an 85% slope,

35% fixed cost percentage, and three lot sizing profiles. The six MAD permanent data

sets were based on treatments of 85% slope, all three fixed cost percentages, and the three

lot sizing profiles. As previously explained, the rationale for combining MAD permanent

data sets from different files was due to the 85% slope and 35% fixed cost overlap

between the two factorial experiments.

COMBINFC. SAS (Appendix B, pg 138) combined nine selected MAD permanent

data sets from Step 13 of Figure 13. The nine MAD permanent data sets were based on

treatments with 35% fixed cost percentage, all three slopes, and all three lot sizing

profiles.

The two programs described above yielded two MAD permanent data sets which

contained 1,800 MAD observations per data set. These two data sets were now ready for

input into the two ANOVA programs (Steps 10 and 15 from Figure 13).
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ANOVA To analyze the data contained in the two permanent MAD data sets,

two ANOVA models were used. ANOVA models were used since they provide for the

simultaneous investigation of the differences among the means of several populations

(treatments) associated with multiple factors.

ANOVA was used to determine overall significance, main factor significance,

interaction significance, and factor level effects.

ANOVA Program. To conduct the ANOVA analyses, two SAS programs

were written (Steps 11 and 16 from Figure 13). These programs provided the significance

of factor main effects, interaction effects, and allowed assessment of factor level effects on

MAD through comparison of factor level means.

The first ANOVA program, PROCANSL. SAS (Appendix B, pg 140), looked

strictly at an 85% slope, all three fixed cost percentage levels, all three lot sizing profiles,

and both models. This program allowed analysis of interactions between model and fixed

cost percentage as well as the interactions between model and lot sizing profile in terms of

which model produced the lowest MAD under which conditions.

The second ANOVA program, PROCANFC. SAS (Appendix B, pg 147), looked

strictly at a 35% fixed cost percentage, all three slopes, all three lot sizing profiles, and

both models. This program allowed analysis of interactions between model and slope as

well as the interactions between model and lot sizing profile in terms of which model

produced the lowest MAD under which conditions.

ALNOVA Analysis. The ANOVA output was analyzed by examining the

overall significance, significance of the main effects, significance of the interaction effects,
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and analysis of factor level means through graphical procedures and multiple comparison

tests. The details for each of these assessments are included in Chapter 4.

Chapter Summary

This chapter has focused on the methodology to meet the research questions

specified in Chapter 1. Specifically, this chapter explained three areas of research: 1)

interview process, 2) comparison of correct/incorrect parameter development and

application when estimating total production costs, and 3) a means to compare the cost

prediction variability between the standard unit learning curve model (AXb) and the

SAF/FMC model (F/Q + AXb) when fitted to total cost lot data. Within each of these

research areas, the general processes were outlined. The following chapter will focus on

the detailed analysis of the interview process, analysis of the of correct/incorrect

parameter development and application simulation, and analysis of the ANOVA output.
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IV. Analysis

Chapter Overview

This chapter addresses each of the research questions identified in Chapter 1. The

first six research questions pertain to the first general research hypothesis which deals with

the different uses and the accuracy of the standard unit learning curve model (AXb) when

estimating total costs for a production run. Specifically, personal interviews were

conducted to assess current field practice, and then total cost estimates were computed

based on simulated data to address the accuracy of the standard learning curve model

when estimating total costs.

The remaining three research questions pertain to the second general research

hypothesis which deals with the predictive accuracy of the standard unit learning curve

model (AXb) versus the SAF/FMC model (F/Q + AXb) when fit to total cost lot data.

Specifically, the conditions under which either model outperformed the other were

examined.

Research Questions 1-3

Personal interviews were conducted to address the first three research questions,

which were:

Research Question 1
With the standard unit learning curve model, do USAF cost studies calculate
learning curve slopes correctly but apply them incorrectly when estimating total
production run costs, i.e., do they use recurring costs only for calculating the slope
but include fixed cost in the theoretical first unit cost when applying that slope?

Research Question 2
With the standard unit learning curve model, do USAF cost studies develop
learning curve slopes incorrectly but apply them correctly when estimating total
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production run costs, i.e., do they use total cost data for calculating the slope but
include variable cost only in the theoretical first unit cost when applying that slope?

Research Question 3
With the standard unit learning curve model, do USAF cost studies develop
learning curve slopes incorrectly and apply them incorrectly when estimating total
production run costs, i.e., do they use total cost data for slope development and
include fixed cost in the theoretical first unit cost when applying that slope?

These three research questions represent three of the four possible combinations of

correct/incorrect development of learning curve slope parameters and correct/incorrect

application of those slope parameters to first unit values when estimating total costs for a

fixed length production run. The one possible combination which is specifically excluded

is the correct development and correct application combination.

To address these research questions, personal interviews with cost analysts at four

system program offices at Wright-Patterson AFB and one AFIT instructor were

conducted. The primary goal of the interviews was to survey current cost analysis

practice with respect to learning curves. The secondary goal was to attempt to identify at

least one case of field practice for each of the three categories identified in the research

questions above.

Results from the interview process yielded at least one case for each of the three

research questions identified above, i.e., at least one correct slope development and

incorrect application (Research Question 1), at least one incorrect slope development and

correct application (Research Question 2), and at least one incorrect slope development

and incorrect slope application (Research Question 3). In fact, many interviewees

reported knowledge of all three cases both within their current program office and at

previous program offices. Data was not gathered to estimate the proportion of total
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applications that diverge from the theoretically correct practice. In addition, anonymity

was promised to those interviewed. In light of the primary and secondary goals

established above, the first three research questions were met.

Given that current field practice deviates from the theoretically correct slope

development and slope application process of estimating total costs, the next set of three

research questions addressed whether or not these deviations cause a significant difference

in total cost estimates when compared to the theoretically correct process.

Research Questions 4-6

Research Questions 4-6 deal with the correct slope coefficient development and

incorrect slope coefficient application, incorrect slope coefficient development and correct

slope coefficient application, and incorrect slope coefficient development and incorrect

slope coefficient application. The actual research questions are addressed in the total cost

estimates section of this chapter. Before addressing the correct and incorrect slope

coefficient applications, the correct and incorrect slope coefficient development were

analyzed.

Correct Slope Development. The correct slope development process followed the

steps outlined in Figure 6 as described in Chapter 3. The results of this process are

outlined in Table 7 below (For complete information including standard deviations,

standard error of the estimates, and approximate p-values see Appendix A, pg 115).
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Table 7 Analysis of Correctly Developed Slope Coefficients

Estimated Population
Slope Slope t Test Hypothesis

Model Coefficient Coefficient Value t* Decision

DIA -0.415318 -0.415037 -0.0233 +/-1.987 Cannot Reject

DIB -0.415318 -0.415037 -0.0233 +/-1.987 Cannot Reject

DIC -0.415318 -0.415037 -0.0233 +/-1.987 Cannot Reject

D2A -0.245349 -0.234465 -0.8361 +/-1.987 Cannot Reject

D2B -0.245349 -0.234465 -0.8361 +/-1.987 Cannot Reject
D2C -0.245349 -0.234465 -0.8361 +/-1.987 Cannot Reject

D3A -0.075426 -0.074001 -0.1102 +/-1.987 Cannot Reject
D3B -0.075426 -0.074001 -0.1102 +/-1.987 Cannot Reject

D3C -0.075426 -0.074001 -0.1102 +/-1.987 Cannot Reject
EIA -0.437756 -0.415037 -2.0837 +/-1.987 Reject

EIB -0.437756 -0.415037 -2.0837 +/-1.987 Reject

EIC -0.437756 -0.415037 -2.0837 +/-1.987 Reject
E2A -0.240869 -0.234465 -0.6068 +/-1.987 Cannot Reject
E2B -0.240869 -0.234465 -0.6068 +/-1.987 Cannot Reject
E2C -0.240869 -0.234465 -0.6068 +/-1.987 Cannot Reject

E3A -0073969 -0.074001 -0.003 1 +/-1.987 Cannot Reject
E3B -0.073969 -0.074001 -0.003 1 -/-1.987 Cannot Reject
E3C -0.073969 -0.074001 -0.0031 +/-1.987 Cannot Reject

IIA -0.422261 -0.415037 -0.5866 +/-1.987 Cannot Reject

JiB -0.422261 -0.415037 -0.5866 +/-1.987 Cannot Reject
IIC -0.422261 -0.415037 -0.5866 +/-1.987 Cannot Reject

12A -0.236048 -0.234465 -0.1331 +/-1.987 Cannot Reject

12B -0.236048 -0.234465 -0.1331 +/-1.987 Cannot Reject

12C -0.236048 -0.234465 -0.1331 +/-1.987 Cannot Reject

13A -0.073291 -0.074001 0.0606 +/-1.987 Cannot Reject
13B -0.073291 -0.074001 0.0606 +/-1.987 Cannot Reject
DC -0.073291 -0.074001 0.0606 +/-1.987 Cannot Reject

As Table 7 shows, even when the slope is developed correctly, the derived slope is

not always an accurate estimate of!he tne population slope. For the treatment with 75%

slope and equal lot profile, the dr&rived slope was significantly different from the

population slope. This was with an cx/2 of 0.025 and 99 degrees of freedom.
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In the instances described above, the derived slope coefficient was less than the

population slope coefficient. This would equate to a steeper slope or a system with more

learning. Using a steeper slope for estimates would lead to lower estimates as shown

earlier in Chapter 1, Figure 1.

Incorrect Slope Development. The results of the incorrect slope development

process as described in Figure 7 in Chapter 3 are summarized in Table 8 (For complete

information including standard deviations, standard error of the estimates, and

approximate p-values see Appendix A, pg 120).

Table 8 Analysis of Incorrectly Developed Slope Coefficients

Estimated Population
Slope Slope t Test Hypothesis

Model Coefficient Coefficient Value t* Decision

DIA -0.175813 -0.415037 12.8532 +/-1.987 Reject
DIB -0.038092 -0.415037 16.3456 +/-1.987 Reject
DIC 0.089137 -0.415037 18.9042 +/-1.987 Reject
D2A -0.036955 -0.234465 10.9279 +/-1.987 Reject
D2B 0.082157 -0.234465 13.7938 +/-1.987 Reject
D2C 0.193083 -0.234465 15.7511 +/-1.987 Reject
D3A 0.093480 -0.074001 9.2022 +/-1.987 Reject
D3B 0.193105 -0.074001 11.5735 +/-1.987 Reject
D3C 0.287517 -0.074001 13.0089 +/-1.987 Reject
ElA -0.341567 -0.415037 8.2228 +/-1.987 Reject
EIB -0.285903 -0.415037 16.4398 +/-1.987 Reject
ElC -0.228114 -0.415037 28.0371 +/-1.987 Reject
E2A -0.191735 -0.234465 4.9571 +/-1.987 Reject
E2B -0.150181 -0.234465 10.2595 +/-1987 Reject
E2C -0.125422 -0.234465 18.2989 +/-1.987 Reject
E3A -0.059363 -0.074001 1.73313 +/-1.987 Cannot Reject
E3B -0,047035 -0.074001 3.9949 +/-1.987 Reject
E3C -0.037840 -0.074001 6.6094 +/-1.987 Reject
HA -0.423340 -0.415037 -0.8043 +/-1.987 Cannot Reject
liB -0.430266 -0.415037 -1.4924 +/-1.987 Cannot Reject
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Estimated Population
Slope Slope t Test Hypothesis

Model Coefficient Coefficient Value t* Decision
IIC -0.446366 -0.415037 -3.3643 +/-1.987 Reject
12A -0.287635 -0.234465 -5.2010 +/-1.987 Reject
12B -0.324256 -0.234465 -7.9913 +/-1.987 Reject
12C -0.358465 -0 234465 -9.7691 +/-1.987 Reject
13A -0.182044 -0.074001 -9.0953 +/-1.987 Reject
13B -0.246736 -0.074001 -12.5626 +/-1.987 Reject
13C -0303469 -0.074001 -15.2806 +/-1.987 Reject

As Table 8 shows, three treatments: 1) equal lot profile, 95% slope, 20% fixed

cost, 2) increasing lot profile, 75% slope, 20% fixed cost and 3) increasing lot profile,

75% slope, 35% fixed cost, resulted in a derived slope coefficient which was statistically

the same as the population slope coefficient. In all other cases, the developed slope

coefficient was significantly different from the population slope coefficient with the

majority of p-values being 0.0001.

For decreasing and equal lot profiles, the derived slope was flatter than the

population slope. This would lead to overestimations of variable costs. For the increasing

lot profiles, the derived slope was steeper than the population slope. This would lead to

underestimation of variable costs.

Once the tests of the developed slope coefficients was accomplished, the next step

involved tests of the total cost estimates which were calculated using the developed

slopes. The research questions will also be addressed in the total cost estimates section,

Total Cost Estimates. Before analyzing the results of the total cost estimates

comparison, the effects of lot profile on the fixed costs incorporated into the T 1 value, the
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effects of learning on the fixed costs incorporated into the T I value, and the effects of the

difference between correctly and incorrectly developed slopes need to be addressed.

The computation process for total cost estimates was described in Figures 8 and 9

from Chapter 3. For the incorrectly applied cases, this process called for adjusting the TI

value to include fixed costs. This process was expected to have the following results.

For treatments with a decreasing lot profile, the incorrect application cases would

underestimate total cost due to the large first lot sizes lowering the amount of fixed costs

added to the T I value. For treatments with an equal lot profile, this effect should not be

apparent. The treatments with an increasing lot profile would over estimate total cost due

to the small first lot size increasing the amount of fixed costs added to the T I value.

The second effect, the learning on fixed costs incorporated in the T 1 value, had

mixed effects in this thesis due to six incorrectly developed slope coefficients being

positive. Incorporating fixed costs in the TI value causes the learning effect to be applied

to fixed costs as well as variable costs. This means fixed costs will increase or decrease

(depending on the slope coefficient) at the same rate as variable costs. For negative slope

coefficients, the fixed costs would decrease by the same proportion as variable costs

leading to underestimation of total cost. For positive slope coefficients, fixed costs would

increase by the same proportion as variable costs leading to overestimation of total cost.

The third effect, difference in slope coefficients, was discussed under the slope

development analysis above. To recap, the estimate using a flatter slope will have a higher

total cost estimate, all else being equal, and the estimate using a steeper slope will have a

lower total cost estimate, all else being equal.
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The results of the total cost estimate computation process are summarized in

Tables 9, 10, 11, 12, and 13. The correct slope development/correct slope application

case was used as the baseline to compare the total cost estimates (Tables 9 and 10). The

correct/correct case was used as the baseline because it is the theoretically correct process

to follow.

Correct/Correct Total Cost Estimates. The correct/correct case is

summarized in two tables. The first table (Table 9) holds information regarding the total

cost estimate and the standard deviation. The second table (Table 10) has confidence

interval values for one, two, and three standard deviations (sigma). As discussed earlier,

for normally distributed populations or samples, 99.7% of all values will fall within three

standard deviations of the mean. These bounds were used to determine how closely the

other three cases' (correct/incorrect, incorrect/correct, and incorrect/incorrect) total cost

estimates were to the correct/correct case total cost estimates. In most instances, the total

cost estimates for the three cases were not within three standard deviations of the

correct/correct estimates.

Table 9 Correct/Correct Total Cost Estimates and Standard Deviations

Slope Standard
Model Coefficient Total Cost Deviation

DIA -04•15318 $3,103,329 $19,066.3
DIB -0.415318 $3,819,577 $19,066.3
DIC -0.415318 $4,965,326 $19,066.3
D2A -0.245349 $6,957,625 $40,150.8
D2B -0.245349 $8,563,445 $40,150.8
D2C -0.245349 $11,132,200 $40,150.8
D3A -0.075426 $16,281,184 $87,098.5
D3B -0.075426 $20,038,881 $87,098.5
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Slope Standard
Model Coefficient Total Cost Deviation

D3C -0.075426 $26,049,894 $87,098.5
ElA -0.437756 $2,800,742 $19,066.3
EIB -0.437756 $3,447,153 $19,066. 3
EIC -0.437756 $4,481,187 $19,066.3
E2A -0.240869 $7,111,807 $40,150.8
E2B -0.240869 $8,753,212 $40,150.8
E2C -0.240869 $11,378,891 $40,150.8
E3A -0.073969 $16,402,780 $87,098.5
E3B -0.073969 $20,188,542 $87,098.5
E3C -0.073969 $26,244,448 $87,098.5
11A -0.422261 $3,006,024 $19,066.3
IiB -0.422261 $3,699,814 $19,066.3
IIC -0.422261 $4,809,638 $19,066.3
12A -0.236048 $7,281,822 $40,150.8
12B -0.236048 $8,962,467 $40,150.8
12C -0.236048 $11,650,916 $40,150.8
13A -0.073291 $16,459,668 $87,098.5
13B -0.073291 $20,258,559 $87,098.5
13C -0.073291 $26,335,469 $87,098.5

Using the total cost estimates and the standard deviations, Table 10, below, was

constructed to show the one, two, and three standard deviation bounds.

Table 10 Standard Deviation Bound Values for Correct/Correct
Total Cost Estimates

Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound
1 Sigma 1 Sigma 2 Sigma 2 Sigma 3 Sigma 3 Sigma

$3,084,262 $3,122,395 $3,065,196 $3,141,461 $3,046,130 $3,160,527
$3,800,511 $3,838,643 $3,781,444 $3,857,709 $3,762,378 $3,876,776
$4,946,259 $4,984,392 $4,927,193 $5,003,458 $4,908,127 $5,022,525
$6,917,474 $6,997,776 $6,877,323 $7,037,927 $6,837,173 $7,078,077
$8,523,294 $8,603,596 $8,483,143 $8,643,746 $8,442,992 $8,683,897

$11,092,049 $11,172,351 $11,051,898 $11,212,502 $11,011,748 $11,252,652
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Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound

I Sigma 1 Sigma 2 Sigma 2 Sigma 3 Sigma 3 Sigma
$16,194,085 $16,368,282 $16,106,987 $16,455,381 $16,019,888 $16,542,479
$19,951,783 $20,125,980 $19,864,684 $20,213,078 $19,777,586 $20,300,177
$25,962,796 $26,136,993 $25,875,697 $26,224,091 $25,788,599 $26,311,190

$2,781,675 $2,819,808 $2,762,609 $2,838,874 $2,743,543 $2,857,941
$3,428,087 $3,466,219 $3,409,020 $3,485,286 $3,389,954 $3,504,352
$4,462,120 $4,500,253 $4,443,054 $4,519,319 $4,423,988 $4,538,3 86
$7,071,656 $7,151,958 $7,031,505 $7,192,108 $6,991,354 $7,232,259
$8,713,061 $8,793,363 $8,672,910 $8,833,513 $8,632,759 $8,873,664

$11,338,740 $11,419,042 $11,298,5-09 $11,459,193 $11,258,439 $11,499,343
$16,315,682 $16,489,879 $16,228,583 $16,576,977 $16,141,485 $16,664,076
$20,101,443 $20,275,640 $20,014,345 $20,362,739 $19,927,246 $20,449,837
$26,157,350 $26,331,547 $26,070,251 $26,418,645 $25,983,153 $26,D05.744

$2,986,958 S3,025,090 $2,967,891 $3,044,156 $2,948,825 $3,063,223
$3,680,748 $3,718,880 $3,661,682 $3,737,947 $3,642,615 $3,757,013
$4,790,572 $4,828,704 $4,771,506 $4,847,771 $4,752,439 $4,866,837
$7,241,671 $7,321,973 $7,201,521 $7,362,124 $7,161,370 $7,402,275
$8,922,316 $9,002,618 $8,882,165 $9,042,768 $8,842,014 $9,082.919

$11,6i0,765 $11,691,066 $11,570,614 $11,731,217 $11,530,463 $11,771.368
$16,372,569 $16,546,766 $16,285,471 $16,633,865 $16,198,372 $16,720,963
$20,171,461 $20,345.658 $20,084,362 $20,432,756 $19,997,264 $20,519,855
$26,248,370 $26,422,567 $26,161,272] $26,509,666 $26,074,173 $26,596,764

One reservation with using the correct/correct process as the baseline was that the

correct development process did not always derive a slope that was statisticaily the same

as the actual slope. Another reservation was. even though the correctly derived slope was

statistically the same as the population slope, the slope was almost always steeper than the

population slope with the three treatments characterized by an increasing lot profile and

95% slope being the only exceptions. As discussed earlier, steeper slopes lead to

underestimation of variable costs.
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The next three sections will discuss the correct/incorrect, incorrect/correct, and

incorrect/incorrect cases and highlight the treatments where the total cost estimates were

within three standard deviations of the correct/correct case.

Research Question 4
Do the correct slope development and incorrect slope applications lead to
significant differences in total cost estimates for a fixed length production run
when compared to the correct/correct combination?

Correct/Incorrect Total Cost Estimates. Table 11 summarizes the results

of the total cost estimates and the comparison with the correct/correct total cost estimates.

The correct/incorrect case had no total cost estimates that fell within three standard

deviations of the correct/correct total cost estimates.

Table 11 Correct/Incorrect Total Cost Estimates and Comparison to
Correct/Correct Total Cost Estimates

Confidence Interval Direction of
Model Slope Total Cost Test Results Estimate

DIA -0.415318 $2,521,889 Not within 3 sigma Under
DIB -0.4153 18 $2,567,073 Not within 3 sigma Under
DIC -0.415318 $2,639,443 Not within 3 sigma Under
D2A -0.245349 $5,773,716 Not within 3 sigma Under
D2B -0.245349 $6,013,197 Not within 3 sigma Under
D2C -0.245349 $6,396,284 Not within 3 sigma Under
D3A -0.075426 $14,110.251 Not within 3 sigrma Under
D3B -0.075426 $15,362,925 Not within 3 sigma Under
D3C -0.075426 $17,366,488 Not within 3 sigma Under
E1A -0.437756 $2,313,133 Not within 3 sigma Under
E1B -0.437756 $2,396,819 Not within 3 sigma Under
E1C -0.437756 $2,530,694 Not within 3 sigma Under
E2A -0.240869 $6,124,404 Not within 3 sigma Under
E2B -0.240869 $6,626,213 Not within 3 sigma Under
E2C -0.240869 $7,429,136 Not within 3 sigma Under
E3A -0.073969 $15,363,828 Not within 3 sigma Under
E3B -0.073969 $17,950,546 Not within 3 sigma Under
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MConfidence Interval Direction of
Model Slope Total Cost Test Results Estimate

E3C -0.073969 $22,089,296 Not within 3 sigma Under

I1A -0.422261 $2,923,719 Not within 3 sigma Under
I1B -0.422261 $3,522,519 Not within 3 sigma Under
IIC -0.422261 $4,480,539 Not within 3 sigma Under
12A -0.236048 $8,794,257 Not within 3 sigma Over
12B -0.236048 $12,219,772 Not within 3 sigma Over
12C -0.236048 $17,700,654 Not within 3 sigma Over
13A -0.073291 $28,164,467 Not within 3 sigma Over
B3B -0.073291 $45,468,187 Not within 3 sigma Over
I3C -0.073291 $73,154,336 Not within 3 sigma Over

Since the same slope parameter was used in both the correct/correct and

correct/incorrect cases, the slope coefficients had no effect on the differences in the total

cost estimates. The reason for the overestimation and underestimation of total cost was

the process of adjusting the T I value for incorporating fixed costs and the learning effect

on fixed costs included in the T] value.

For the treatments with a decreasing lot profile, the large first lot size effect and

the learning effect led to underestimation of total cost when compared to the

correct/correct case.

For the treatments with an equal lot profile, the learning effect caused the

underestimation of total cost when compared to the correct/correct case.

The increasing lot profile treatments had mixed effects. The small first lot size

A'% uld lead to overestimation of total cost while the learning effect would lead to

underestimation of total cost. For the first three treatments, 75% slope (the steepest

slope), the learning effect outweighed the small first lot size effect. For the other six
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treatments, 85% and 95% slope (flatter slopes, less learning), the small first lot size effect

was stronger.

Research Ouestion 5
Do the incorrect slope development and correct slope applications lead to
significant differences in total cost estimates for a fixed length production run
when compared to the correct/correct combination?

Incorrect/Correct Total Cost Estimates. Table 12 lists the total cost

estimates for this case and the results of the comparison with the correct/correct case.

Since the fixed costs were treated the same in both cases, the differences in the total cost

estimates can be fully explained by the differences in the slope coefficients.

Table 12 Incorrect/Correct Total Cost Estimates and Comparison to
Correct/Correct Total Cost Estimates

Confidence Interval Direction of
Model Slope Total Cost Test Results Estimate

D1A -0.175813 $9,808,806 Not within 3 sigma Over
DIB -0.038092 $24,264,710 Not within 3 sigma Over
DIC 0.089137 $61,164,070 Not within 3 sigma Over
D2A -0.036955 $19,830,308 Not within 3 sigma Over
D2B 0.082157 $45,355,201 Not within 3 sigma Over
D2C 0.193083 $106,117,215 Not within 3 sigma Over
D3A 0.093480 $39,111,264 Not within 3 sigma Over
D3B 0.193105 $81,640,313 Not within 3 sigma Over
D3C 0.287517 $176,199,101 Not within 3 sigma Over
EIA -0.341567 $4,378,080 Not within 3 sigma Over
E1B -0.285903 $7,031,809 Not within 3 sigma Over
EIC -0.228114 $12,113,628 Not within 3 sigma Over
E2A -0.191735 $9,061,677 Not within 3 sigma Over
E2B -0.150181 $13,118,888 Not within 3 sigma Over
E2C -0.125422 $20,209,448 Not within 3 sigma Over
E3A -0.059363 $17,675,164 Not within 3 sigma Over
E3B -0.047035 $23,174,562 Not within 3 sigma Over
E3C -0.037840 $31,584,244 Not within 3 sigma Over
I1A -0.423340 $2,991,212 Within 1 sigma Under
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Confidence Interval Direction of
Model Slope Total Cost Test Results Estimate

I1B -0.430266 $3,566,841 Not within 3 sigma Under
IIC -0.446366 $4,309,404 Not within 3 sigma Under
12A -0.28763 5 $5,665,645 Not within 3 sigma Under
12B -0.324256 $5,850,295 Not within 3 sigma Under
12C -0.358465 $6,468,028 Not within 3 sigma Under
I3A -0.182044 $9,508,989 Not within 3 sigma Under
B3B -0.246736 $8,505,559 Not within 3 sigma Under
13C -0.303469 $8,399,970 Not within 3 sigma Under

For both the decreasing and equal lot profile treatments, the incorrectly developed

slope coefficients were greater than the correctly developed slope coefficients. This led to

the overestimation of total cost. This overestimation was compounded in six of the nine

decreasing lot profile treatments where the incorrectly developed slope coefficients were

positive.

For the increasing lot profile treatments, the incorrectly developed slope

coefficients were less than the correctly developed slope coefficients. This led to

underestimation of total costs. One case, increasing lot profile, 75% slope, 20% fixed cost

burden, was within one standard deviation of the correct/correct total cost estimate. This

occurred because the estimated slope coefficient was only 0.001079 less than the correctly

developed slope coefficient. The difference between the slope coefficients in the other

treatments was significant enough to cause the other total cost estimates to fall outside the

three standard deviation bounds as shown in Figure 10.

Research Ouestion 6
Do the incorrect slope development and incorrect slope applications lead to
significant differences in total cost estimates for a fixed length production run
when compared to the correct/correct combination9
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Incorrect/Incorrect Total Cost Estimates. The results of this case are

summarized in Table 13. The over and underestimation of total costs followed the same

pattern as the previous case (incorrect/correct), but the amount of error differed.

Table 13 Incorrect/Incorrect Total Cost Estimates and Comparison to
Correct/Correct Total Cost Estimates

[ Confidence Interval Direction of
Model Slope Total Cost J Test Results Estimate

DIA -0.175813 $7,971,028 Not within 3 sigma Over
DIB -0.038092 $16,307,904 Not within 3 sigma Over
DIC 0.089137 $32,513,291 Not within 3 sigma Over
D2A -0.036955 $16,455,983 Not within 3 sigma Over
D2B 0.082157 $31,848,136 Not within 3 sigma Over
D2C 0.193083 $60,972,299 Not within 3 sigma Over
D3A 0.093480 $33,896,168 Not within 3 sigma Over
D3B 0.193105 $62,590,022 Not within 3 sigma Over
D3C 0.287517 $117,465,333 Not within 3 sigma Over
EIA -0.341567 $3,615,856 Not within 3 sigma Over
E1B -0.285903 $4,889,244 Not within 3 sigma Over
E1C -0.228114 $6,841,020 Not within 3 sigma Over
E2A -0.191735 $7,803,554 Not within 3 sigma Over
E2B -0.150181 $9,931,045 Not within 3 sigma Over
E2C -0.125422 $13,194,496 Not within 3 sigma Over
E3A -0.059363 $16,555,619 Within 2 sigma Over
E3B -0.047035 $20,605,552 Not within 3 sigma Over
E3C -0.037840 $26,583,668 Not within 3 sigma Over
I1A -0.423340 $2,909,312 Not within 3 sigma Under
IliB -0.430266 $3,395,918 Not within 3 sigma Under
IIC -0446366 $4,014,533 Not within 3 sigma Under
12A -0.287635 $6,842,399 Not within 3 sigma Under
12B -0.324256 $7,976,517 Not within 3 sigma Under
12C -0.358465 $9,826,551 Not within 3 sigma Under
B3A -0.182044 $16,271,022 Within 3 sigma Under
13B -0.246736 $19,089,824 Not within 3 sigma Under
I3C -0.303469 $23,333,331 Not within 3 sigma Under
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Although the pattern was the same between both the incorrectly developed slope

coefficient cases, the causes of the over and underestimations differed. As discussed in the

incorrect/correct section, the incorrectly developed slope coefficients lead to

overestimation of total costs for treatments with decreasing or equal lot profiles and

underestimation of total costs for treatments with increasing lot profiles. As discussed at

the beginning of the total cost estimate section and the correct/incorrect case, the large

first lot size for decreasing lot profile treatments would lead to underestimation of total

costs while the small first lot size for increasing lot profile treatments would lead to

overestimation of total costs. Also, the learning effect would cause overestimation of total

cost for those treatments with a positive slope and underestimation of total cost for those

treatments with negative slopes.

For decreasing lot profile treatments, the effects of the large first lot size are

overwhelmed by the effects of the flatter slope estimates. For the six treatments with

positive slopes, the learning effect adds to the overestimation. For the three treatments

with negative slopes, the learning effect reduces the effect of the flatter slope; but, as with

the first lot size effect, it cannot offset the effect of the flatter slope.

For the nine treatments with an equal lot profile, the overestimation of total cost

due to a flatter slope outweighs the learning effect on fixed costs, The one treatment,

95% slope and 20% fixed cost burden, does have a total cost estimate within two standard

deviations of the correct/correct total cost estimate. This is the one treatment where the

learning effect almost offsets the effect of the flatter slope.
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For the last nine treatments with an increasing lot profile, three different effects are

occurring. The steeper slopes and the learning effect would lead to underestimation of

total cost, while the small first lot size would lead to overestimation of total cost. The

sum of these effects led to underestimation of total costs. These mixed effects led to one

treatment's total cost estimate being within three standard deviations of the

correct/correct total cost estimate. This treatment had an increasing lot profile with 95%

slope and a 20% fixed cost burden.

For the three cases, correct/incorrect, incorrect/correct, and incorrect/incorrect,

the majority of the total cost estimates were not within three standard deviation of the

correct/correct total cost estimates. When the total cost estimate did fall within three

standard deviations, it was a result of differing effects canceling each other out or the rare

instance when the correctly developed slope coefficients were similar. Overall, using any

process other than the correct/correct process led to inaccurate total cost estimates when

compared to the correct/correct process.

Since the standard unit learning curve model was clearly inadequate when slopes

were developed from total cost lot data, a logical question arose as to whether a model

that explicitly incorporates a fixed cost component would be superior when an analyst was

faced with just total cost lot data from which to derive a slope parameter. This issue was

addressed in Research Questions 7-9 by comparing the cost prediction variability between

the standard unit learning curve model (AXb) and the SAF/FMC model (F/Q + AXb) when

fitted to total cost lot data.
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Research Questions 7-9

As mentioned in Chapter 3, two factorial experiments were established and the

results were analyzed through ANOVA. The complete SAS output from both ANOVA

programs is included in Appendix D (pg 140-146, 147-153). Before examining the

conditions under which either model was superior, the ANOVA F tests and P-values

required review.

F Tests. The F statistics and F test P-values for the overall ANOVA, main effects,

and interaction effects (two-way) are summarized in Tables 14 and 15 for both ANOVA

analyses. Table 14 is for the first factorial experiment where the fixed cost percentage is

fixed at 35% while Table 15 is for the second factorial experiment where the slope is fixed

at 85%.

Table 14 Overall, Main, and Two Factor Interaction F Test Results
(35% Fixed Cost)

Factor(s) F Stat P-Value 11 Factor(s) F Stat P-Value

Overall ANOVA 1,024.30 <0.0001 Model * Lot Profile 1,751.75 <0.0001
Model 2,678.16 <0.0001 Model * Slope 466.53 <0.0001
Lot Profile 1,733.22 <0.0001 Lot Profile * Slope 288.89 <0.0001
Slope 789.58 <0.0001

Table 15 Overall, Main, and Two Factor Interaction F Test Results (85% Slope)

Factor(s) F Stat P-Value 11 Factor s) F Stat P-Value

Overall ANOVA 1,150.31 <0.0001 Model * Lot Profile 2,249.71 <0.0001
Model 3,213.79 <0.0001 Model * FC Percent 424.46 <0.0001
Lot Profile 2,194.46 <0.0001 Lot Profile * FC % 290.30 <0.0001
FC Percent 420.90 <0.0001
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All three-way interaction effects in both factorial experiments were assumed to be

zero in accordance with traditional experimental practice (19:315). As a result, both

ANOVA programs were written to restrict the analysis to a maximum of two-way

interactions. By restricting the analysis to two-way interactions, any three-way

interactions were pooled into the error term for each factorial experiment.

Overall F Test. Based on the overall ANOVA F test at a=0.05, both

ANOVA models are significant since the P-values are <0.0001. This means that the

ANOVA models as a whole account for the behavior of MAD for each factorial

experiment.

Main Effects F Test. All of the main effects are statistically significant at

a=0.05- however, the main effects have little meaning if higher order interactions (i.e.,

two-way interactions) are significant. Significant two-way interactions indicate the main

effects alone are insufficient to model the response of MAD (19:308), i.e., joint factor

effects occur. This follows from the hierarchy principle which states that both lower order

interactions (e.g., two-way interactions) and main effects are unimportant in the presence

of higher order interactions such as three-way and four-way interactions (19:323).

Two-Way Interaction F Test. In light of the discussion in the preceding

paragraph, a test for two-way interactions was required. Tables 14 and 15 report the F

tests for two-way interactions in addition to the overall ANOVA and main effects. Note

these tables include only two-way interactions due to the pooling assumption described

earlier.
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For both factorial experiments, all two-way interactions were significant at cx=0.05

since all two-way interaction P-values were < 0.0001. This meant the effect on MAD was

explained by only joint factor effects as opposed to single factor effects (i.e., main effects).

Tests for main effects and two-way interaction significance were a necessary first

step in terms of deciding whether or not the changes in MAD across treatments could be

modeled by single factors alone or joint factors. Unfortunately, these significance tests

provide no insight into the numerical values of factor level means. Factor level means, in

both tabular and graphical form, are of more practical use to the researcher, but only after

establishing significance as done above.

Main Effects Factor Level Means. Assuming there are no significant interactions

among the factors, the main effects factor level means for each factorial experiment can be

tabulated, graphed, and analyzed. For both factorial experiments, this is a poor

assumption since two-way interaction significance has already been established as

discussed above. The main effects factor level means analysis is provided for illustrative

purposes only since many researchers tend to ignore all interactions, regardless of

significance.

Each ANOVA program was wntten to provide all of the factor level means for

both main effects and two-way interactions. Table 16 and Figure 14 below represent the

main effects factor level means for the first factorial experiment with fixed cost percentage

fixed at 35%.
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Table 16 Main Effects Factor Level Means (35% Fixed Cost)

Model Model Lot Lot Slope Slope
MAD Profile Profile MAD

MAD

Lvl I Unit $1,707.49 Incr $ 514.72 75% $ 359.25
LvI2 SAF $ 209.60 Equal $ 210.25 85% $ 782.01
Lvl 3 Decr $2,150.66 95% $1,734.37

"$2,500.00

52.000.00

G S1.500.00 ',

51.000.00
C

" S5500.00... .

5-

2 3

Lvl 1 LvA 2 Lvl 3 Factor Levels

Model Unit SAF I - - - -Slopes -- Model
Lot Profile Incr Equal Decr - M

Slope 75% 85% 95% U Lot Size Profile

Figure 14 Main Effects (35% Fixed Costs)

Table 17 and Figure 15 below represent the main effects for the second factorial

experiment with slope fixed at 85%.
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Table 17 Main Effects Factor Level Means (85% Slope)

Model Model Lot Lot FC % FC %
MAD Profile Profile MAD

MAD
Lvi I Unit $1,495.56 Incr $ 416.58 20% $ 459.22
Lvl2 SAF $ 173.56 Equal $ 169.49 35% $ 765.31
Lvl 3 Decr $1,917.61 50% $1,279.14

S2.000.00

s1.800.00 ..... ...... ... .. . .

$ 1.600-00
S1.400.00 .

SI.200.00
S SI.O00.O0 .. . . " .... ..

. S800.o0
S,600.00 /
S S400.00

S200.00

S- I
2 3

Factor Levels

Lvl I Lvl2 Lvl3 - - FC% - Model
Model Unit SAP Lot Size Profile
Lot Profile Incr Equal Deer
FC% 20% 35% 50%

Figure 15 Main Effects (85% Slope)

Based on an examination of the tables and figures above, model and lot sizing

profile should have the highest F values of any single factors since they show the largest

MAD changes between factor levels and also the strongest deviation from a horizontal

line. A horizontal line indicates that the factor level effects on MAD for one factor have

the same MAD mean, i.e., no difference in their effect on MAD- Examination of Tables
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14 and 15 confirms that model and lot sizing profile have the highest F values for single

factors for both factorial experiments.

Two-Way Interaction Factor Level Means. To address Research Questions 7-9,

an examination of the joint factor level means was required since the research questions

specifically posed questions about model and other factors.

The two-way interaction factor level means are measured in terms of the

dependent variable, i.e., MAD. These means are also described as joint factor level means

since both factors interact to produce the specific MAD mean. For each of the Research

Questions 7-9, the joint factor level means will be examined in both tabular and graphical

form.

Research Ouestion 7
Is the SAF/FMC model superior to the standard learning curve model under all of
the slope levels under consideration?

To answer this question, the output from the first ANOVA program for the first

factorial experiment was used. The joint factor level means were extracted and are

summarized in Table 18 below and graphed in Figure 16 below.

Table 18 Joint Factor Level Means for Model and Slope

75% 85% 95%
Unit Model $647.48 $1,395.34 $3,079.65
SAF/FMCModel $ 71.02 $ 168.68 $ 389.10
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Figure 16 Interaction Effect Between Model and Slope

Based on Table 18 and Figure 16, the SAF/FMC model outperformed the Unit

model under all three slopes selected for the analysis since performance is measured in

terms of lowest MAD. As far as trends within the models, both models performed best

with a 75% slope, second best with a 85% slope, and worst with a 95% slope.

Research Ouestion 8
Is the SAF/FMC model superior to the standard learning curve model under all of
the fixed cost percentage levels under consideration?

To answer this question, the output from the second ANOVA program for the

second factorial experiment was used. The joint factor level means were extracted and are

summarized in Table 19 below and graphed in Figure 17 below.
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Table 19 Joint Factor Level Means for Model and Fixed Cost Percentage

1120% FC 35% FC 50% FC
Unit Model 1$748,79 $1,348.12 $2,389.76
SAF/FMC Model $169.66 $ 182.50 $ 168.53

S2.500.00

$2.000.00

S1.500.00

., S1.000.00 "

. - °
SS500.00

20% 35% 5000

Fixed Cost Percentage

- --- Unit Model - -- - SAF'FMC Model

Figure 17 Interaction Effect Between Model and Fixed Cost Percentage

Based on Table 19 and Figure 17, the SAF/FMC model outperformed the Unit

model under all three fixed cost percentages selected for the analysis. In terms of trends

within the models, the SAF/FMC model performed best with 50% fixed costs while the

Unit model performed best with 20% fixed costs. Second best results were also mixed as

the SAF/FMC model performed second best with 20% fixed costs while the Unit model

performed second best with 35% fixed costs.
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Research Ouestion 9
Is the SAF/FMC model superior to the standard learning curve model under all of
the lot size profiles under consideration?

To answer this question, the output from both ANOVA programs for both

factorial experiments was used. The joint factor level means were extracted and are

summarized in Tables 20 and 21 below and graphed in Figures 18 and 19 below.

Table 20 Joint Factor Level Means for Model and Lot Sizing Profile
(35% Fixed Costs)

Increasing Equal Decreasing
Unit Model $792.90 1 $227.91 1$4,101.66
SAF/FMC Model $236.55 $192.59 $ 199.66

Table 21 Joint Factor Level Means for Model and Lot Sizing Profile (85% Slope)

Increasing Equal Decreasing
Unit Model J$621.35 E$185.99 $3,679.33
SAF/FMC Model $211.82 $152.98 $ 155.90
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Figure 18 Interaction Effect Between Model and Lot Sizing Profiles
(35% Fixed Costs)
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Figure 19 Interaction Effect Between Model and Lot Sizing Profiles (85% Slope)
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Based on Tables 20 and 21 and Figures 18 and 19, the SAF/FMC model

outperformed the Unit model under all three lot sizing profiles selected for the analysis.

Both models performed best with an equal lot sizing profile (40 units per lot). In terms of

trends within the model, the results for second best were mixed. The SAF/FMC model

performed second best with a decreasing lot profile while the Unit model performed

second best with an increasing lot profile.

Chapter Summary

This chapter addressed each of the nine research questions listed in Chapter 1. The

first three research questions were addressed through personal interviews, the next three

by development and application of slope parameters under various conditions, and the last

three through factorial experiments and ANOVA. The next chapter will summarize

findings from this chapter and suggest areas for further research-
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V. Conclusions and Recommendations

Chapter Overview

This chapter summarizes the research findings for the nine research questions used

to answer the two general hypotheses. Additionally, the chapter recommends areas for

further learning curve research.

Summary of Findings

The first of the three research areas attempted to identify if a hypothesized

problem with the development and application of the slope coefficient for the standard unit

learning curve formulation (AXb) indeed existed. A usage problem by definition is any

deviation from the theoretically correct use of learning curves, i.e., development of slope

coefficients based on variable (recurring) cost data only and application of the slope

coefficients to TI values which contain only variable cost data. Interviews with costs

analysts at Wright-Patterson AFB and an AFIT instructor confirmed that problems do

exist. There were numerous ways that the slope coefficients for standard unit learning

curve formulation were being developed and applied. Part of the problem stemmed from

the analyst's inability to gain insight into the segregation of historical data into its variable

and fixed (non-recurring) cost components. Other problems stemmed from differing

definitions of what constitutes a fixed cost and a variable cost. Another problem is that

many CERs for production costs do not segregate fixed and variable costs.
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Based on confirmation that hypothesized usage problems exist, the degree of

inaccuracy was assessed through comparison of total cost estimates derived under various

development and application combinations to the correct/correct slope

development/application. For almost every treatment within the three cases

(correct/incorrect, incorrect/correct, and incorrect/incorrect), the total cost estimate was

significantly different from the total cost estimate calculated in the correct/correct case.

The results show that when using the standard unit learning curve formulation, the analyst

must ensure only variable costs are used for developing the slope coefficients and the

slope coefficient is used to predict only variable costs. Another method for estimating the

fixed portion of total costs should be used.

In light of the inaccuracy with the standard unit learning curve model when fit to

total cost lot data, the SAF/FMC model (F/Q + AX ) was investigated. Specifically,

when fit to total cost lot data, the SAF/FMC model was compared to the AXb model in

terms of prediction variability (measured by MAD). As hypothesized in the second

general research hypothesis from Chapter 1, the SAF/FMC model was superior (as

measured by MAD) under all of the slopes, lot sizing profiles, and fixed cost percentages

under consideration. This is logical in that the SAF/FMC model explicitly considers a

fixed cost component whereas the AXb model does not, thus, the prediction variability

should be lower for the SAF/FMC model since it is a better fitting model.
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Areas for Further Research

This research effort had numerous areas which warrant further research.

Additionally, there are some other interesting research areas regarding learning curves and

the mathematics of learning curve fitting that could be investigated.

First, investigation of a random effects design, instead of the fixed effects design

used for the factorial experiments, would allow general statements regarding factor level

trends. At present, the conclusions drawn from this research can only be applied to the

specific factor levels chosen for investigation.

Second, a comparison of the F/Q + AXb model to the AXb model when the former

is fit to total cost lot data and the latter is fit to variable cost lot data would prove

interesting as this represents more of an 'apples to apples' comparison than that used in

this research.

Third, the use of historical production lot cost data, instead of simulated lot cost

data used in this research, would serve to validate the research findings presented in this

thesis.

Fourth, this study used the developed slope coefficients for only one new

production run. In order to get a more definite finding of the inaccuracies involved with

incorrectly developing and/or applying the slope coefficient, more new production runs

need to be simulated. This would allow use of inferential statistics such as the t-test.

Fifth, a comprehensive study of the various learning curve models and their origin,

underlying concepts, mathematical forms, and uses would prove interesting. This

research would include, but not be limited to, the cumulative average model, the unit
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model, and production rate models. The conditions under which each is useful would also

be examined. This would eliminate a great deal of confusion among DOD cost analysts

with respect to which learning curve and which form should be used.

Last, non-linear fining methodology and techniques require research. With many

of the models, such as the SAF/FMC model, an iterative non-linear fitting technique must

be used. Few analysts really understand the mathematics behind non-linear fitting nor are

they aware of the different non-linear fitting options within statistical programs. A

discussion as to which models require non-linear fitting, techniques for non-linear fitting,

and when each technique should be used would prove useful to DOD cost analysts.
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Appendix A: Sample Programs/Output for Correct/Incorrect Slope
Development and Application

The following programs were used for data simulation and analysis of
correct/incorrect slope development and correct/incorrect slope application.

Program I: This is one of three programs created to insert variability into the unit data
used in the fitting comparison between the Unit formulation and the SAF/FMC
formulation. The other two programs were for the 85% and 95% learning curves. This
program would be adjusted in the following way for the other two programs:

I = 75% slope

2 = 85% slope
3 = 95% slope

The bolded and underlined numbers would be changed to reflect the treatment under
consideration.

* PROGRAM NAME: NORMAL1.SAS;

*THIS PROGRAM SIMULATES A LEARNING CURVE WITH 25000 FIRST UNIT

COST, 75% SLOPE, CONSTANT STANDARD DEVIATION OF .2 AND A
RANDOM ERROR;

DATA ONE;
OPTIONS LINESIZE=72;
A = LOG (25000);
B = LOG (.7.5/LOG (2);
C = .2;
DO J = 1 TO 100;

TOTCOST = 0;
DO I = 1 TO 480;

LNX=LOG(I);
Z = RANNOR (6969);
LNY = A + (B * LNX) + (C*Z);
COST = EXP (LNY);
TOTCOST = TOTCOST + COST;
FILE NORMAL I,
PUT I COST TOTCOST;
END,

END;
PROC PRINT,
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Program II: This is one of nine programs used to separate the production run data created
in NORMAL?. SAS into twelve lots. These nine programs were for variable cost only-
therefore, fixed cost burden was not considered. The data file from this program was used
as an input for UNITCC.SAS and UNITCI. SAS for correct slope developed. Using the
following information, the other eight programs could be created:

D = Decreasing lot profile
E = Equal lot profile
I = Increasing lot profile
1 = 75% slope
2 =85% slope
3 95% slope

The bold and underlined letters and numbers would be changed to reflect the treatment
under consideration.

*PROGRAM NAME: DLT1A;

*THIS PROGRAM IS FOR A DECREASING LOT SIZE PROFILE, WITH A 75%

SLOPE;

DATA TWO;
OPTIONS LINESIZE=72,
INFILE NORMAL1
INPUT N I-N 1440;
ARRAY NUM[1440] NI-N1440;
ARRAY COST[480] YY 1-YY480;
ARRAY LOT[ 12,6] L 1-L72;
ARRAY TOTCOST[480] TC 1-TC480;

DO I= 1 T0480;
COST[I] = NUM[I*3-1];
TOTCOST[I] = NUM [I*3],

END;

*THE FOLLOWING 12 ARRAYS ARE USED TO BREAK THE PRODUCTION RUN

DATA INTO LOTS. EACH ARRAY HAS THE FOLLOWING INFORMATION:
CUMULATIVE UNITS, CUMULATIVE TOTAL VARIABLE COST, TOTAL COST,
ALGEBRAIC LOT PLOT POINT, LOT AVERAGE COST, AND LOT SIZE,

LABEL I
TEMP = 65 + (23 * RANUNI(0895));
TEMP = ROUND(TEMP, 1).

LOT[1, 1] = TEMPI
LOT[1.2] = TOTCOST[TEMP],
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LOT[1,3] TOTCOST[TEMP];
LOT[1,4] = 0;
B = LOG(.75)LOG(2),

DOI= 1 TO LOT[1, 1],
DUM = LOT[ 1,41 + (I* *B),
LOT[1,4] = DUM;

END;
LOT[1,4] = (LOT[1,4]/LOT[1, 1])**(1IB);l
LOT[1,5] = LOT[1,3)]/TEMP;
LOT[ 1,6] = LOT[ 1, 1];

TEMP = 60 + (5 * RANUNI(0895));,
TEMP = ROUND(TEMP,I1);

LOT[2, 1I = TEMP + LOT[ 1, 1I
LOT[2,2J = TOTCOST[L0T172,1]];
LOT[2,3] = LOT[2,2] - LOT[ 1,2],
LOT[2,4] = 0;
Z =LOT[2, 1] - LOT[ 1, 11,
DOI= I TO Z;

DUM = LOT[2,4] + ((I + LOT[1, 1])* *B);
LOT[2,4] = DUM;-

END;-
LOT[2,4] = (LOTf2,4]/Z)**(IIB);
LOT[2,5] = LOT[2,31/TEMlP;
LOT[2,6] = LOT[2, 1] - LOT[ 1, 1],

TEMP = 55 + (5 * RANUNI(0895));-
TEMP = ROUND(TENIP, 1);

LOT[3), I = TEMP + LOT[2,1],
LOT[3),2] = TOTCQST[LOT[3,1]]l;
LOT[3,3] = LOT[3,2] - LOT[2,2],
LOT[3,4] =0;1
Z = LOT[3, 11 - LOT[2, fl,

DOI= I TO Z,
DUM = LOT[3,4] + ((I + LOT[2,1I])* *B),
LOT[3,4] = DUM,

END;
LOT[31,4] = (LOT[3),4]IZ)**OI/B),
LOTII3,5] = LOT[3),33]/TENT-,
LOT[3,6] = LOT[3,1 I LOT(2,1I,

TEMP = 50 + (5 * RANUNI(0895)).-
TENT = ROUND(TEP, I),-

LOT[4,11 =- TEMP + LOTII3, I]
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LOT[4,21 =TOTCOSTIILOT[4,1If,
LOT[4,33] =LOT[4,2] - LOT[3,2];-
LOT[4,4] =0;
Z = LOT[4,1I] - LOT[3),1] -

DOI= ITO Z,
DUM =LOT[4,41 + ((I + LOT[3),I])* *B),
LOT[4,4] = DUM;-

END;
LOT[4,4] =(LOT[4,4]/Z)**(1/B);
LOT[4,5] = LOT[4,3II/TEMP;-
LOT[4,6] =LOT[4, I -LOT[3, I]

TENvII= 45 + (5 * RANUNI (0895));
TEMP =ROUND(TEMP, 1);-

LOT[5, I] =TEMP + LOT[4, 1];
LOT[5,2] TOTCOST[LOT[5,1]]l;
LOT[5,33] =LOT[5,2] - LOT[4,2];
LOT[5,4] =0;1
Z = LOT[5,l1] - LOT[4,1I];

DO I= I TO Z;
DUM =LOT[5,4] + ((I + LOT[14,1])**B)-,
LOT[5,4] =DIJM;

END;-
LOT[5,4] (LOT[5,41/Z)**(lIB);-
LOT[5,5] = LOT[5,33]ITEMP;1
LOT[5,6] LOT[5, 1] - LOT[4, I]

TEMP = 40 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, I),-

LOT[6, I] =TEMP + LOT[5,lI];
LOT[6,2] =TOTCOST[LOT[6, I]],-
LOT[6,3]1 LOT[6,2] - LOT[5,2];-
LOT[6,41 0;
Z =LOT[6,I] - LOT[5,I);

DO0I I TO Z;
DUM =LOT[6,4] + ((I + LOT[5, I])* *B);
LOT[6,4] = DUM;

END,
LOT[6,41 (LOT[6,41/Z)**(I/B);-
LOT[6,5] LOT[6, 3]/TEMP;-
LOT[6,61 LOT[6,lI] - LOT[5,lI];

TEMP = 35 + (5 * RANUNI(0895));
TEMP = ROUND(TEM, 1),
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LOT[7,1I] =TEMP + LOT[6,1I];
LOT[7,2] = TOTCOST[LOT[7,1I]],
LOT[7,3] = LOT[7,2] - LOT[6,2];
LOT[7,4] = 0;
Z = LOT[7,1I] - LOT[6,I],-

DOI= I TOZ;
DUM = LOT[7,4] + ((I + LOT[6,1])**B),
LOT[7,4] =DUM;

END;
LOT[7,4] =(LOT[7,4]/Z)**(1/B);
LOT[7,5] =LOT[7,3])/TEMP;-
LOT[7,61 Z;-

TEMP = 3 0 + (5 * 1)ANTJN%(O895));
TEMP = ROUM)(TEMP, 1);
LOT[8, 1] = TEND + LOT[7,1];
LOT[8,2] TOTCOST[LOT[8,)Ifl;
LOT[8,33] = LOT[8,2] - LOT[7,2],-
LOT[8,4] =0;
Z = LOT[8, I] - LOT[7, I];

D0I= 1 TO Z-
DUM = LOT[8,4] + ((I + LOT[7, I])* *B),
LOT[8,4] = DUJM;

END;
LOT[8,4] =(LOT[8,4]/Z)**(1/B);
LOT[8,51 = LOT[8,331/TEXV-;
LOT[8,6] =Z

TEND = 25 + (5 * RANUNI(0895)),-
TEMP = ROUND(TEMP, 1);

LOT[9, 1] = TEMP + LOT[8,1I];
LOT[9,2] = TOTCOST[LOT[9, 1]];
LOT[9,33] = LOT[9,2] - LOT[8,2];
LOT[9,4] = 0;
Z = LOT[9,1I] - LOT[8,1]I

DO I= I TO Z;
DUM = LOT[9,4] + ((I + LOT[8, I])* *B),
LOT[9,4] =DUJM;

END;-
LOT[9,4] =(LOT[9,4]/Z)**(l/B);
LOT[9,5] = LOT[9,37j/TEMP;
LOT[9,6] =Z

TEMP = 20 + (5 * RANTJNI(0895)),;
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TEMP = ROUND(TEMP, 1),
LOT[10,1] = TEMP + LOT[9,1],

IF LOT[ 10,1 ] > 480 THEN GOTO LABEL 1;
LOT[10,2] = TOTCOST[LOT[10,1]];
LOT[10,3] = LOT[10,2] - LOT[9,2];
LOT[10,4] = 0;
Z = LOT[10,1] - LOT[9,1);

DO I = I TO Z;
DUM = LOT[10,4] + ((I + LOT[9,1])**B);
LOT[ 10,4] = DUM;

END;
LOT[10,4] = (LOT[ 10,4]/Z)**(1I/B);
LOT[10,5] = LOT[10,3]/TEMP;
LOT[10,6] = Z;

TEMP = 10 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[11,1] = TEMP + LOT[10,1];
IF LOT[ 11,1] > 480 THEN GOTO LABELI;
LOT[ 11,2] = TOTCOST[LOT[ 11,1 ]];
LOT[ 11,31 = LOT[ 11,21 - LOT[10,2];
LOT[ 11,4] = 0;
Z = LOT[11,1] - LOT[10,1];

DO I = 1 TO Z;
DUM = LOT[ 11,41 + ((I + LOT[10,1])**B);
LOT[ 11,4] = DUM;

END;
LOT[1 1,4] = (LOT[1 1,4]/Z)**(1/B);
LOT[1 1,5] = LOT[1 1,3]/TEMP;
LOT[1 1,6] = Z;

TEMP = 480 - LOT[11,1];
IF TEMP < 5 OR TEMP > 10 THEN GOTO LABEL I

LOT[12,1] = TEMP + LOT[1 1,1];
LOT[12,2] = TOTCOST[LOT[12,1]];
LOT[12,3] = LOT[12,2] - LOT[ 11,2];
LOT[ 12,4] = 0;
Z = LOT[12,1] - LOT[11,1];

DOI 1 TO Z;
DUM = LOT[12,4] + ((I + LOT[11,1])**B);
LOT[ 12,4] = DUM;

END;
LOT[12,4] = (LOT[12,4]/Z)**(I /B);
LOT[12,5] = LOT[12,3]/TEMP;
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LOT[12,6] - Z;

*TBE FOLLOWING STATEMENTS OUTPUTS THE LOT DATA INTO A FILE TO
BE USED BY THE REGRESSION PROGRAMS,

FILE DLTI A,
DOI= I TO 12,

PUT LOT[I, I] LOT[I,2] LOT[I,3] LOT[I,4] LOT[I,5] LOT[I,6];
END;

99



Program III: This is one of 27 programs used to separate the production run data created
in NORMAL?.SAS into twelve lots. These 27 programs were for total cost; therefore,
fixed costs were added to each lot. The data file from this program was used as an input
for UNITIC. SAS and UNITII. SAS for incorrect slope developed and the COMB 9??. SAS
programs for fitting the Unit and SAF/FMC formulations. Using the following
information, the other 28 programs could be created:

D = Decreasing lot profile
E = Equal lot profile
I = Increasing lot profile
1 = 75% slope
2 =85% slope
3 = 95% slope
A = 20% fixed cost burden
B = 35% fixed cost burden
C = 50% fixed cost burden

The bold and underlined letters and numbers would be changed to reflect the treatment
under consideration.

*PROGRAM NAME: DLTGENlA;

*THIS PROGRAM IS FOR A DECREASING LOT SIZE PROFILE, WITH A 75%

SLOPE AND 20% FIXED COST BURDEN;

DATA TWO;
OPTIONS LINESIZE=72;
INFILE NORMALl1
INPUT N1-N1440;
ARRAY NUM[ 1440] N 1-N 1440;
ARRAY COST[480] YYI-YY480;
ARRAY LOT[12,6] L1-L72;
ARRAY TOTCOST[480] TC I-TC480,

DO I = I TO 480;
COST[I] = NUM[I*3-1];
TOTCOST[I] = NUM [1*3];

END;

LFC = 32368; *LFC = LOT FIXED COST;

*THE FOLLOWING 12 ARRAYS ARE USED TO BREAK THE PRODUCTION RUN

DATA INTO LOTS. EACH ARRAY HAS THE FOLLOWING INFORMATION.
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CUMULATIVE UNITS, CUMULATIVE TOTAL VARIABLE COST, TOTAL COST,
ALGEBRAIC LOT PLOT POINT, LOT AVERAGE COST, AND LOT SIZE;

LABEL I
TEMP = 65 + (23 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[ 1,1] = TEMP;
LOT[I,2] = TOTCOST[TEMP];
LOT[1,3] = TOTCOST[TEMP] + LFC;
LOT[1,4] = 0;
B = LOG(.75)/LOG(2),

DOI= 1 TO LOT[1,1];
DUM = LOT[1,4] + (I**B);
LOT[I,4] = DUM;

END;
LOT[I,4] = (LOT[1,4]/LOT[1,1])**(1/B),
LOT[1,5] = LOT[1,3]/TEMP;
LOT[ 1,6] = LOT[, 1];

TEMP = 60 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[2,1] = TEMP + LOT[1, 1];
LOT[2,2] = TOTCOST[LOT[2,1]];
LOT[2,3] = LOT[2,2] - LOT[l,2] + LFC;
LOT[2,4] = 0;

Z = LOT[2,1] - LOT[I,1];
DO I 1 TO Z;

DUM = LOT[2,4] + ((I + LOT[1, 1])**B);
LOT[2,4] = DUM;

END;
LOT[2,4] = (LOT[2,4]/Z)**(I/B);
LOT[2,5] = LOT[2,3]/TEMP;
LOT[2,6] = LOT[2,1] - LOT[ 1,1];

TEMP = 55 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[3,1] = TEMP + LOT[2,1];
LOT[3,2] = TOTCOST[LOT[3,1]];
LOT[3,3] = LOT[3,21 - LOT[2,2] + LFC,
LOT[3,4] = 0;
Z = LOT[3,1] - LOT[2,1];

DO I = I TO Z;
DUM = LOT[3,4] + ((I + LOT[2, 1I])**B);
LOT[3,4] = DUM;
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END,
LOT[3,4] (LOT[3,4]/Z)**(l/B);
LOT[33,5] =LOT[3,3]/TEMP;
LOT[3,6] =LOT[3,1I] - LOT[2,1I];

TEMP =50 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP,I),-

LOT[4, 1] = TEMP + LOT[3,1]I
LOT[4,2] = TOTCOST[LOT[4,1]]l;
LOT[4,33] = LOT[4,2] - LOT[33,2] + LFC;-
LOT[4,4] = 0;
Z = LOT[4, I] - LOT[3, I];

D0O 1 TO Z;
DUM = LOT[4,4] + ((I + LOT[3,1I])* *B),
LOT[4,4] =DUM;

END,
LOT[4,4] = (LOT[4,4]/Z)**(1IB);
LOT[4,5] = LOT[4,3]ITENV,
LOT[4,6] = LOT[4,] I LOT[3,1]I

TENP = 45 + (5 * RANUNI (0895));
TEMP = ROUND(TEMP, 1);

LOT[5, I] = TEND + LOT[4, I]
LOT[5,2] = TOTCOST[LOT[5, I]];
LOT[5,3]1 = LOT[5,2] - LOT[4,2] + LFC;
LOT[5,4] 0;
Z =LOT[5, I] - LOT[4,1]I

DOI= I TO Z;
DUM = LOT[5,4] + ((I + LOT[4, I])* *B),
LOT[5,4] = DUM,

END,
LOT[5,4] = (LOT[5,4]/Z)**(1/B);
LOT[5,5] = LOT[5,3]/TENP;
LOT[5,6] = LOT[5, 1] - LOT[4,lI];

TEMP = 40 + (5 * RANUNI(0895));
TEMP =ROUND(TEXV,l1);

LOT[6, I] = TEMP + LOT[5,1I];
LOT[6,2] =TOTCOST[LOT[6,1]]l;
LOT[6,3]1 LOT[6,2] - LOT[5,2] + LFC;
LOT[6,4] = 0;
Z = LOT[6,1I] - LOT[5, I]

DOI=I TO Z;
DUM = LOT[6,4] + ((I + LOT[5,1I])* *B);
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LOT[6,4] = DUJM;
END,

LOT[6,41 = (LOT[6,41/Z)**(l/B);
LOT[6,5I LOT[6,3)]/TENP;
LOT[6,6] = LOT[6,1I] - LOT[5,1I];

TEMP = 35 + (5 * PRJNTJI.4(0895));-

TEMP =ROUND(TEMP, 1);
LOT(7, I] =TEMP +' LOT[6, I];
LOT[7,2] =TOTCOST[LOT[7, 1]];
LOT[7,33] = LOT[7,2] - LOT[6,21 + LFC;
LOT[7,4] =0;
Z = LOT[7, I] - LOT[6,1]I

DO0I I TO Z;
DUM = LOT[7,4] + ((I + LOT[6,lI])* *B);
LOT[7,4] = DUM;

END;
LOT[7,4] =(LOT[7,4]/Z)**(1IB);
LOT[7,5] =LOT[7,3-]ITEMP;-
LOT[7,6] =Z;

TEMP = -30 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[8,lI] = TEMP + LOT[7, I],
LOT[8,2] = TOTCOST[LOT[8,1]]l;
LOT[8,3] =LOT[8,2] - LOT[7,2] + LFC;
LOT[8,4] =0;
Z = LOT[8,1I] - LOT[7,l]I

DOI= 1 TOZ;
DUM = LOT[8,4] + ((I + LOT[7,1I])* *B),
LOT[8,4] = DUM;

END;
LOT[8,41 (LOT[8,4]/Z)**(IIB);
LOT[8,51 =LOTII8,3JITENT;
LOT[8,6] =Z;-

TEMP = 25 + (5 * RANUNI(0895));-
TEMP = ROUND(TENP, 1);

LOT[9, I] =TEMP + LOT[8,1]I
LOT[9,2] =TOTCOST[LOT[9,1]]l;
LOT[9,3] =LOT[9,2] - LOT[8,2] + LFC;
LOT[9,4] =0;7
Z = LOT[9, I) - LOT[8,1)I

DOI= I TO Z,
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DUM = LOT[9,4] + ((I + LOT[8, 1])**B);
LOT[9,4] = DUM;

END;
LOT[9,4] = (LOT[9,4]/Z)**(1/B);
LOT[9,5] = LOT[9,3]/TEMP;
LOT[9,6] = Z

TEMP = 20 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[ 10,1] = TEMP + LOT[9,1 ];
IF LOT[ 10,1] > 480 THEN GOTO LABEL 1;

LOT[10,2] = TOTCOST[LOT[10,1]];
LOT[10,3] = LOT[10,2] - LOT[9,2] + LFC;
LOT[10,4] = 0;
Z = LOT[10,1] - LOT[9,1];

DO I = 1 TO Z;
DUM = LOT[10,4] + ((I + LOT[9,1])**B);
LOT[ 10,4] = DUM;

END;
LOT[ 10,4] = (LOT[ 1 0,4]/Z)* *( l/B);
LOT[10,5] = LOT[10,3]/TEMP;
LOT[10,6] = Z;

TEMP = 10 + (5 * RANUNI(0895));
TEMP = ROUND(TEMP, 1);

LOT[11,1] = TEMP + LOT[10,1];
IF LOT[11,1] > 480 THEN GOTO LABEL1;

LOT[ 11,2] = TOTCOST[LOT[11,1]];
LOT[ 11,3] = LOT[ 11,2] - LOT[10,2] + LFC;
LOT[ 11,4] = 0;
Z = LOT[11,1] - LOT[10,1];

DO I = I TO Z;
DUM = LOT[ 11,4] + ((I + LOT[10,1])**B);
LOT[ 11,4] = DUM;

END;
LOT[1 1,4] = (LOT[1 1,4]/Z)**(1/B);
LOT[1 1,5] = LOT[1 1,3]/TEMP;
LOT[1 1,6] = Z;

TEMP = 480- LOT[l1,1];
IF TEMP < 5 OR TEMP > 10 THEN GOTO LABEL ;

LOT[12,1] = TEMP + LOT[11,1];
LOT[ 12,2] = TOTCOST[LOT[ 12,1]];
LOT[12,3] = LOT[12,2] - LOT[ 11,2] + LFC;
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LOT[ 12,4] = 0;
Z = LOT[12,1I] - LOT[I1,1];-

DOI= 1 TO Z;
DUM = LOT[12,4] + ((I + LOT[11,1])**B);
LOT[ 12,4] = DUM;

END,
LOT[12,4] = (LOT[12,4]/Z)**(I/B),
LOT[ 12,5] = LOT[12,3]/TEMP,
LOT[12,61 - Z;

*THE FOLLOWING STATEMENTS OUTPUTS THE LOT DATA INTO A FILE TO

BE USED BY
THE REGRESSION PROGRAMS;

FILE DLTGENlA;
DOI I TO 12;

PUT LOT[I, 1] LOT[I,2] LOT[I,3] LOT[I,41 LOT[I,5] LOT[I,61;
END;

The following is the Excel Spreadsheet (LOTFC.XLS) was used to calculate the lot FC
for the above program. The TVC column was calculated using the LEARN Program
(output to follow).

TI = $25,000

SLOPE TVC VC% TC FC% TFC LOT FC
0.75 1.553.665 0.80 1,942,081 0.20 388.416 32.368
0.75 1.553.665 0.65 2.390.254 0.35 836,589 69.716
0.75 1,553.665 0.50 3.107,330 0.50 1.553.665 129.472
0.85 3.669.279 0.80 4.586.599 0.20 917.320 76,443
0.85 3,669.279 0.65 5.645.045 0.35 1,975,766 164.647
0.85 3,669,279 0.50 7,338.558 0.50 3,669,279 305,773
0.95 8.200.051 0.80 10,250.064 0.20 2.050.013 170,834
0.95 8,200,051 0.65 12,615,463 0.35 1.4,415,412 367.951
0.95 8,200.051 0.50 16,400.102 0.50 8,200.051 683.338
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This is the output from the LEARN program for a TI of $25,000 and all three slopes:

Unit Curve Formulation

First unit (A) = ****25000.00
Slope - 75.0%
Slope coefficient (b) - -0.415037
Unit/lot 1- 480
Cost of unit 480 = *****1928.08
Average cost of unit Ito 480 = *****3236.80
Total cost through unit 480 = **1553665.44
Total cost of lot ( 1 - 480) = **1553665.44
Average cost of units in lot = *****3236.80

Unit Curve Formulation

First unit (A) = ****25000.00
Slope - 85.0%

Slope coefficient (b) - -0.234465
Unit/lot - 1- 480
Cost of unit 480 - *****5878.71

Average cost of unit 1 to 480 = *****7644.33
Total cost through unit 480 = **3669279.08
Total cost of lot ( 1 - 480) = **3669279.08
Average cost of units in lot = *****7644.33

Unit Curve Formulation

First unit (A) - ****25000.00
Slope = 95.0%
Slope coefficient (b) = -0.074001

Unit/lot 1 i- 480

Cost of unit 480 = ****15831.67
Average cost of unit I to 480 = ****17083.44
Total cost through unit 480 = **8200051.20

Total cost of lot ( I - 480) = **8200051.20
Average cost of units in lot = ****17083.44
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The following is an example of the output from the lot generating nrograms. This sample
is from DLTGENIA.SAS. It was copied from SAS into Excel so that headings could be
added and the numbers would be aligned for easier reading.

Cum Unit Cum Lot Lot Total Algebraic Lot Avg Lot Lot
# Variable Cost Cost Plot Point Total Cost Size

79 $ 527,818.09 $560.186.09 24.5 $ 7,090.96 79
150 $ 772.120.88 $276.670.79 112.4 $ 3,896.77 71
211 $ 960.246.54 $220,493.65 179.8 $ 3.614.65 61
266 $ 1.101.170.94 $ 173.292.41 238.3 $ 3.150.77 55
319 $ 1.226.610.44 $ 157.807.50 292.4 $ 2.977.50 53
361 $ 1.323,871.11 $ 129.628.67 340.2 $ 3.086.40 42
394 $ 1.393.214.78 $ 101,711.67 377.8 $ 3.082.17 33
422 $ 1,454.437.60 $ 93.590.82 408.4 $ 3,342.53 28
444 $ 1.500.251.93 $ 78.182.33 433.4 $ 3.553.74 22
459 $ 1.530.833.24 $ 62.949.31 452.0 $ 4.196.62 15
472 $ 1.557.592.35 $ 59.127.11 466.0 $ 4.548.24 13
480 $ 1.574.080.08 $ 48.855.73 476.5 $ 6.106.97 8

79 $ 522.391.56 $554.759.56 24.5 $ 7.022.27 79
147 $ 773.170.27 $283A146.71 111.0 $ 4.163.92 68
212 $ 967,716.28 $226,914.02 178.6 $ 3.490.98 65
270; $ 1.123,465.45 $ 188.117.17 240.7 $ 3.243.40 58
316 $ 1.235.532.21 $ 144.434.75 293.1 $ 3.139.89 46
361: $ 1.336.987.75 $ 133.823.55 338.6 $ 2.973.86 45
396 $ 1.411.477.37 $ 106.857.61 378.8 $ 3.053.07 35
424 $ 1.471.863.17 $ 92.753.81 410.4 $ 3.312.64 28
448 $ 1,522.898.69 $ 83.403.52 436.4 $ 3.475.15 24
465 $ 1.555.195.27 $ 64,664.58 457.0 $ 3.803.80 17
477 $ 1.578.045.31 $ 55.218.03 471.5 S 4.601.50 12
480 $ 1.584.676.60 $ 38.999.30 479.0 $ 12.999.77 3

80 $ 545,709.45 $ 578.077.45 24.8 $ 7,225.97 80
148 $ 789.688.55 $276.347.10 112.1 $ 4.063.93 68
209 $ 970.522.14 $213.201.58 177.8 $ 3.495.11 61
265 $ 1.123.665.18 $ 185.511.04 236.7 $ 3.312.70 56
310' $ 1.233.117.97 $ 141.820.79 287.6 $ 3.151.57 45
353 $ 1.333.467.20 $ 132.717.22 331.7 $ 3.086.45 43
391 $ 1.417.249.99 $ 116.150.80 372.3 $ 3.056.60 38
421 $ 1.478.667.25 $ 93.785.26 406.4 $ 3.126.18 30
444 $ 1.527.694.02 $ 81.394.77 432.9 $ 3.538.90 23
464 $ 1.566.158.25 $ 70.832.24 454.4 $ 3,541.61 20
475 $ 1.586,310.26 $ 52.520.00 470.0 $ 4.774.55 11
480 $ 1.595.804.50 $ 41.862.24 478.0 $ 8.372.45 5
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The following two pages show the parameters of the decreasing and increasing lot sizing
programs. The selected upper and lower bounds, the selected cumulative upper and lower
bounds, the actual upper and lower bounds, the actual average lot size, and the actual
cumulative lot size average

DLTGEN* *.SAS
Units Unit Cum Cum

Lot # Low Bnd 'Upper Bnd Low Bnd Upper Bnd
1 65 88 65 88
2 60 65 125 153
3 55 60 180 213

4 50 55 230 268
5: 45 50 275 318
6 40 45 315 363
7 35 40 350 403
8 30 35 380 438
9. 25 30 405 468

10 20 25 425 493
11 10 15 435 508
12 480-CumX 480-CumX 435 508

Conditional Statements for DLTGEN* *.SAS:
LOT 10: If the cumulative units through Lot
"10>480. start over at Lot I and rerun the process.

LOT 11: If the cumulative units through Lot 10 >
480, start over at Lot 1 and rerun the process.

LOT 12: If the lotsize for Lot 12 <5 or >10, then
start over at Lot 1 and rerun the process.

Actual
Actual Actual Actual Avg Cum Lot

Lot # Low Bnd Upper Bnd Lot Size Size Avg
1 67 88 77.89 77.89

2 60 65 6241 140.30
3 55 60 57.53, 197.83
4 50 55 52.43 250.26
5 45. 50 47.28 297.54
6 40 45 42.33 339.87
7 35 40 37.35 377.22

8 30 35 32.77 409.99
9 25 30 27.59 437.58

10 20 25 22.50 460.08

11 10 15 12.45 472.53
12 5 10 7.47 480.00
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ILTGEN**.SAS
Units Unit Cum Cum

Lot # Low Bnd Upper Bnd Low Bnd ,Upper Bnd
1 5 10 5 10
2 10 15 15 25
3 20 25 35 50
4 25 30 60 80
5 30 35 90 115
6 35 40 125 155
7 40 45 165 200
8 45 50 210 250
9 50 55 260 305

10 55 60 315 365
11 60 65 375 430
12 480-CumX 480-CumX 375 430

Actual
Actual Actual Actual Avg Cum Lot

Lot # Low Bnd Upper Bnd Lot Size Size Avg
1 5 10 7.76 7 76
2 10 15 12.62 20.38
3 20 25 22.59 42.97
4 25 30 27.43 70.40
5 30 35 32.42 102.82
6 35 40 37.68 140.50
7 40 45 42.22 182.72
8 45 50 47.34 23006
9 50 55 52.55 282.61

10 3!0 60 57.53 340.14

1160 65 62.64 402.78

12 65 88 77.22 480.003
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Program IV This file was created to allow for sorting the information used in later
calculations to do those calculations by production run number.

*PROGRAM NAME: PRODRUN. SAS,

DATA ONE,
FILE PRODRUN,
DOI= I TO 100;

DO J= I TO 12;
PUT I1

END,
END;
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Program V: This is one of nine programs created to fit the lot profile data from the lot
generating programs for variable cost only (?LT??.DAT). This would be return the
correctly developed slope for later calculations. The other eight programs could be
duplicated by using the following information:

D = Decreasing lot profile
E = Equal lot profile
I Increasing lot profile
1 = 75% slope
2 = 85% slope
3 = 95% slope

The bold and underlined letters and numbers would be changed to reflect the treatment
under consideration.

*PROGRAM NAME: UNITD1.SAS;

*THfIS PROGRAM THE FITS THE STANDARD UNIT LEARNING CURVE TO A

DECREASING LOT PROFILE AND 75% SLOPE;

LIBNAME PARAMS '[KTHOMSON. THESIS]';
OPTIONS LINESIZE=72,

DATA THREE;
INFILE DLTIA;

INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
INFILE PRODRUN;

INPUT PRDRUN;

LNLPP = LOG(LPP);
LNAVUCST = LOG(AVUNCST);

PROC REG DATA=THREE OUTEST = PARAMS.DUI NOPRINT;
DULMODEL LNAVUCST = LNLPP;
BY PRDRUN,

PROC PRINT;
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Program VI: This program is an example of the 27 programs used to fit the Unit and
SAF/FMC model to total cost lot data. The other 26 programs can be reproduced from
this program by changing the variable and input file names using the following key.

D = decreasing lot profile
E = equal lot profile
I = increasing lot profile
1 = 75% slope
2 = 85% slope
3.= 95% slope
A = 20% fixed cost burden
B = 35% fixed cost burden
C = 50% fixed cost burden

The bold and underlined characters would be changed depending on the treatment under
consideration (i.e. the line INFILE DLTGEN1A would read INFILE ELTGEN3C for
COMBE3C.SAS when fitting the treatment for equal lot profile, 95% slope, and 50%
fixed cost burden)

*PROG(RAM NAME: COMBD1A. SAS;

*THIS PROGRAM THE FITS THE STANDARD UNIT LEARNING CURVE AND

SAF/FMC MODEL TO AN DECREASING LOT PROFILE, 75% CURVE, WITH 20%
FIXED COSTS;

LIBNAME PARAMS '[KTHOMSON THESIS]';
LIBNAME MAD '[KTHOMSON.THESIS]';
OPTIONS LINESIZE=72;

DATA THREE;
INFILE DLTGENIA;

INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
INFILE PRODRUN;

INPUT PRDRUN,

LNLPP = LOG(LPP),
LNAVUCST = LOG(AVUNCST);

* NEXT TWO MODELS REGRESS NATURAL LOG OF AVG UNIT COST FOR

LOT (DEPENDENT VARIABLE) AGAINST NATURAL LOG OF ALGEBRAIC LOT
PLOT POINT (INDEPENDENT VARIABLE). REGRESSION WILL PRODUCE AN
INTERCEPT AND A COEFFICIENT FOR THE ALGEBRAIC LOT PLOT POINT.
THE INTERCEPT, WHEN CONVERTED FROM LOG SPACE TO UNIT SPACE, IS
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EQUIVALENT TO THE 1 ST UNIT COST (A) WHEREAS THE COEFFICIENT FOR
THE NATURAL LOG OF THE ALGEBRAIC LOT PLOT POINT IS THE SLOPE
COEFFICIENT. TO COMPUTE THE SLOPE, ONE WOULD USE THE
FOLLOWING EQUATION: SLOPE = E**(COEFFICIENT * LOG(2));

PROC REG DATA=THREE OUTEST = PARAMS.DUNITlA;
DUNIT.A:MODEL LNAVUCST = LNLPP;
BY PRDRUN;
OUTPUT OUT=DUNITIA P=PUC R=RESID;
PROC PRINT;

• THE NEXT MODEL (SAF/FMC) USES NON LINEAR REGRESSION. PARTIAL

DERIVATIVES WITH RESPECT TO THE PARAMETERS HAVE NOT BEEN
SPECIFIED SINCE THE DUD (DOESN'T USE DERIVATIVES) METHOD IS BEING
USED;

PROC NLIN DATA=THREE OUTEST=PARAMS.DSAFIA;

*INITIAL GUESS VALUES FOR PARAMETERS;

PARMS B=-.3 F=20000 A=25000;
DSAFIA:MODEL AVUNCST = F/LOTSZ + (A*LPP**B);
BY PRDRUN;
BOUNDS -1<=B<=0;
BOUNDS 0<=F<=900000;
BOUNDS 0<=A<=200000;
OUTPUT OUT=DSAFIA P=PUC R=RESIDLR;

*WRITES THE PREDICTED AVG COSTS (UNIT SPACE), RESIDUALS (UNIT
SPACE), AND ORIGINAL DATA SET TO A NEW DATA SET FOR FURTHER
ANALYSIS;

DATA UNITDIA;
SET DUNITIA
PUCDLR=EXP(PUC);
AUCDLR=EXP(LNAVUCST);
RESIDLR=AUCDLR-PUCDLR;
ABRESID=ABS(RESIDLR);
PROC PRINT;

DATA SAFDI.A,
SET DSAFIA;
ABRESID=ABS(RESIDLR);
PROC PRINT,

*THE FOLLOWING PROCEDURE IS FOR MAD CALCULATIONS FOR UNIT

MODEL,
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PROC MEANS DATA=UNITDIA;
VAR ABRESID,
BY PRDRUN;
OUTPUT OUT=MAD.MADUNDlA N(ABRESID)=N MEAN(ABRESID)=MAD;

*THE FOLLOWING PROCEDURE IS FOR MAD CALCULATIONS FOR THE SAF

MODEL;

PROC MEANS DATA =SAFDIA,
VAR ABRESID;
BY PRDRUN;
OUTPUT OUT=MAD.MADSADIA N(ABRESID)=N MEAN(ABRESID)=MAD;

* THIS SECTION COMBINES THE PERMANENT PARAMETER DATA SETS

FROM EACH MODEL INTO ONE PERMANENT DATA SET;

DATA PARAMS. DAFINAL;
SET PARAMS.DSAF1A;
IF _TYPE- ='FINAL'-

DATA PARAMS. DIAPRM,
SET PARAMS.DUNIT1A

PARAMS.DIAFINAL;
PROC PRINT;

* THIS SECTION COMBINES THE PERMANENT MAD DATA SETS FROM EACH

MODEL INTO ONE PERMANENT MAD DATA SET;

DATA MAD.DlAMAD,
SET MAD.MADUNDlA

MAD.MADSADIA;
PROC PRINT;

114



Program VII: This program is used to calculate the mean of the 100 correctly developed
slope coefficients and correctly apply the mean slope in a new production run with fixed
costs being added in afterwards by use of a factor.

* PROGRAM NAME: UNITCC.SAS;

LIBNAME PARAMS '[KTHOMSON.THESIS]';
OPTIONS LINESIZE=72;
DATA ONE;

SET PARAMS.DU1
PARAMS.DU2
PARAMS.DU3
PARAMS.EUI
PARAMS.EU2
PARAMS.EU3
PARAMS.IUI
PARAMSJU2
PARAMSJ.U3;

PROC SORT;
BY _MODEL;

PROC UNIVARIATE;
VAR LNLPP;
BY _MODEL-;

PROC MEANS DATA=ONE,
VAR LNLPP;
BY _MODEL,
OUTPUT OUT = PARAMS.TESTCCT MEAN(LNLPP) = SLPCOEFF

STD(LNLPP) = STDDEV STDERR (LNLPP) ERROFEST;
PROC PRINT;

DATA PARAMS.UNITCCT;
SET PARAMS.TESTCCT;
VARCOST=O;
COST=O;
X=0;
Tl=40000;
DO 1=1 TO 480;

X=X+ 1;
COST=TI *X**SLPCOEFF;
VARCOST=VARCOST+COST,

END;
TOTCOSTA=VARCOST* 1.25;
TOTCOSTB=VARCOST* 1.5385;
TOTCOSTC=VARCOST*2.00;

PROC PRINT;
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Hypothesis Test for Sample Slope Equals Population Slope
Data from UNITCCSAS and UNTC.SAS programs

CORRECT SLOPE DEVELOPENT Standard
Estimated Populationl t Test Hypothesis Approximate Standard Error of the

N jbdel Slpcoeff Slpcoeff Value t* Decision p-values Desiation Estimate
'DU1A -0.415318 -0.415037 -0.0233 1.987 cannot reject 0.49 0.012056 0.0012056
DUIB -0.415318 -0.415037 -0.0233 1.987 cannot reject 0.49 0.012056 0.0012056
DUIC -0.415318 -0.415037 -0.0233 1987 cannot reject 0.49 0.012056 0.0012056
DU2A -0.245349 -0.234465 -0.8361 1.987 cannot reject 0.21 0.013017 0.0013017
DU2B -0.245349 -0.234465 -0.8361 1.987 cannot reject 0.21 0.013017 0.0013017
DU2C -0.245349 -0.234465 -0.8361 1.987 cannot reject 0.21 0.013017 0.0013017
DU3A -0.075426 -0.074001 -0.1102 1.987 cannot reject 0.48 0.012933 0.0012933
DU3B -0.075426 -0.074001 -0.1102 1.987 cannot reject 0.48 0.012933 00012933
DU3C -0.075426 -0.074001 -0.1102 1.987 cannot reject 0.48 0.012933 0.0012933
EU1A -0.437756 -0.415037 -2.0837 1.987 reject 0.004 0.010903 0.0010903
EUIB -0.437756 -0.415037 -2.0837 1.987 reject 0.004 0.010903 0.0010903
EUIC -0.437756 -0.415037 -2.0837 1.987 reject 0.004 0.010903 0.0010903
EU2A -0.240869 -0.234465 -0.6068 1.987 cannot reject 0.3 0.010553 0.0010553
EU2B -0.240869 -0.234465 -0.6068 1.987 cannot reject 0.3 0.010553 0.0010553
EUJ2C -0.240869 -0.234465 -0.6068 1.987 cannot reject 0.3 0.010553 0.0010553
EU3A -0.073969 -0.074001 0.0031 1.987 cannot reject 0.5 0.010447 0.0010447
EU3B -0.073969 -0.074001 0.0031 1.987 cannot reject 0.5 0.010447 0.0010447

'EU3C -0.073969 -0.074001 0.0031 1.987 cannot reject 0.5 0.010447 0.0010447
IUIA -0.422261 -0.415037 -0.5866 1.987 cannot reject 0.4 0.012314 0.0012314
IUIB -0.422261 -0.415037 -0.5866 1.987 cannot reject 0.4 0.012314 0.0012314
IUIC -0.422261 -0.415037 -0.5866 1.987 cannot reject 0.4 0.012314 0.0012314
IU2A -0.236048 -0.234465 -0.1331 1.987 cannot reject 0.47 0.011885 0.0011885
IU2B -0.236048 -0.234465 -0.1331 1.987 cannotreject 0.47 0.011885 0.0011885
IU2C -0.236048 -0.234465 -0.1331 1.987 cannot reject 0.47 0.011885 0.0011885
IU3A -0.073291 -0.074001 0.0606 1.987 cannot reject 0.49 0.011708 0.0011708
IU3B -0.073291 -0.074001 0.0606 1.987 cannot reject 0.49 0.011708 0.0011708
IU3C -0.073291 -0.074001 0.0606 1.987 cannot reject 0.49 0.011708 0.0011708
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Program VIII: This program is used to calculate the mean of the 100 correctly developed
slope coefficients and incorrectly apply the mean slope in a new production run with fixed
costs included in the T I value.

* PROGRAM NAME: UNITCI. SAS;
LIRNAME PARAMS 'IKTHOMSON.THESISI';
OPTIONS LINESIZE=72;
DATA ONE,

SET PARAMS.DU1
PARAMS-DU2
PARAMS.DU3
PARAMS.EUI
PARAMS .EU2
PARAMS .EU3
PARAMSJWI
PARAMS.1U2
PARAMS.1U3;

PROC SORT;
BY_-MODEL-;

PROC UNI VARIATE;
VAR LNLPP;
BYMODEL;

PROC MEANS DATA=ONE,-
VAR LNLPP;
BY_-MODEL;-
OUTPUT OUT=PARAMS. TESTCIT MEAN(LNLPP)=SLPCOEFF

STD(LNLPP)=STDDEV STDERR(LNLPP)-ERROFEST;
PROC PRINT;

DATA PARAMS.UN[TCIT;
SET PARAMS.TESTCIT;

INFILE TIVALCI;1
INPUT TIA TIB TIC;
TOTCOSTA-O;
TOTCOSTB=0;
TOTCOSTC=O
COSTA-O;
COSTB=O;
COSTC=O;
XA=O;
XB=0;
XC=O;
DO 1=1 TO 480;

X.A=YA+ 1;-
COSTA=T IA*XA* *SLPCOEFF;
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TOTCOSTA=TOTCOSTA+COSTA;
END,
DOJ= I TO 480;

COSTB=T B*XB* *SLPCOEFF;
TOTCOSTB=TOTCOSTB+COSTB,

END;-
DO K=1 TO 480;

XC=XC+1;
COSTC=TIC*XC**SLPCOEFF;
TOTCOSTC=TOTCOSTC+COSTC;-

END;
PROC PRINT,
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Program IX: This program is used to calculate the mean of the 100 incorrectly developed
slope coefficients and correctly apply the mean slope in a new production run with fixed
costs computed separately by use of a factor.

*PROGRAM NAME: UNITIC. SAS;

LIBNAME PARAMS '[KTHOMSON. THESIS]';
* OPTIONS LINESIZE=72,

DATA ONE,
SET PARAMS.DUNIT IA

PARAMS .DUMIT IB
PARAMS.DUNIT IC
PARAMS.EUNIT IA
PARAMS.EUNIT LB
PARAMS.EUNITI1C
PARAMSIUNITIA
PARAMS.JUNIT lB
PARAMS.IUNITI1C
PARAMS.DUJNIT2A
PARAMS .DUNIT2B
PARAMS .DUNIT2C
PARAMS.EUNIT2A
PARAMS .EUNIT2B
PARAMS .EU-NIT2C
PARAMS HfJNIT2A
PARAMS.IUNIT2B
PARAMS .IUNIT2C
PARAMS.DUNIT3A
PARAMS.DUJNIT3B
PARAMS.DIJNIT3C
PARAMS.EUNIT3 A
PARAMS.EUNMT3B
PARAMS .EUNIT31C
PARAMS.IUNIT3)A
PARAMS.RJMIT3B
PARAMS.IUNIT3C,-

PROC SORT,
BY_-MODEL_;

PROC UNI VARIATE;
* VAR LNLPP;

BY_ýMODEL;
PROC MEANS DATA=ONE,

VAR LNLPP,
BY_-MODEL_;
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OUTPUT OUT=PARAMS.TESTICT M.EAN(LNLPP)=SLPCOEFF
STD(LNLPP)=STDDEV STDERR(LNLPP)=ERROFEST,

PROC PRINT;
DATA PARAMS.UNITICT;

SET PARAMS.TESTICT;
VARCOSThO;
COST=0;
X0;-
TI =40000;-
DO I=1 TO 480;

X=X+ 1;
COST=T 1 **SLPCOEFF;
VARCOST=VARCOST+COST;-

END,
IFMODEL = 'DUNITIA' THEN

TOTCOST VARCOST* 1.25;
ELSE IF _MODEL- = 'DUNIT2A' THEN

TOTCOST = VARCOST* 1.25;
ELSE IF_-MODEL- = 'DUNIT'3A' THEN

TOTCOST =VARCOST* 1.25;
ELSE IF _MODEL- = 'DUNIT IB' THEN

TOTCOST = VARCOST* 1. 5385;
ELSE IF _MODEL- =DUNIT2B' THEN

TOTCOST =VARCOST* 1.5385;
ELSE IF_-MODEL- = 'DUNIT3 B' THEN

TOTCOST = VARCOST* 1. 5385;
ELSE IF -MODEL- = 'EUNIT IA' THEN

TOTCOST =VARCOST* 1.25;
ELSE IF _MODEL- = 'EUNIT2A' THEN

TOTCOST = VARCOST* 1.25;
ELSE IF _MODEL- = 'EUNIT3A' THEN

TOTCOST =VARCOST* 1.25;-
ELSE IF _MODEL- = 'EUNIT I B' THEN

TOTCOST =VARCOST* 1. 53 85;
ELSE IF _MODEL- = 'EUNIT2B' THEN

TOTCOST =VARCOST* 1. 53851
ELSE IF_-MODEL- = `EUNIT3B' THEN

TOTCOST = VARCOST* 1. 5385;
ELSE IF_-MODEL- = 'IUNIT IA' THEN

TOTCOST = VARCOST* 1.25;
ELSE IF _MODEL_ = 'IUNIT2A'THEN

TOTCOST =VARCOST* 1.25,
ELSE IF_-MODEL- = 'IUNIT'3A! THEN

TOTCOST =VARCOST* 1.25;
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ELSE IF _MODEL_= 'UNIT1B' THEN
TOTCOST = VARCOST*1.5385;

ELSE IF _MODEL_ ='IUNIT2B' THEN
TOTCOST VARCOST*1.5385;

ELSE IF _MODEL_= 'RJNIT3B' THEN
TOTCOST VARCOST* 1.5385;

ELSE TOTCOST = VARCOST*2;
PROC PRINT,

Hypothesis Test for Sample Slope Equals Population Slope
Data from UNITCC.SAS and UNITICSAS programs

INCORRECT SLOPE DEVELOPMNWT Standard
Estimated Population 1 tTest Hypothesis Approximate Standard Error of the

Model Slpcoeff jSipcoeff [ Value t* Decision p-values Deviation Estimate
DUNITIA -0.175813 -0.415037 12.8532 1.987 reject 0.0001 0.018612 0.0018612
DUNITIB -0.038092 -0.415037 16.3456 1.987 reject 0.0001 0.023061 0.0023061
DUNITIC 0.089137 -0.415037 18.9042 1.987 reject 0.0001 0.026670 0.0026670
DUNIT2A -0.036955 -0.234465 10.9279 1.987 reject 0.0001 0.018074 0.0018074
DUNIT2B 0.082157 -0.234465 13.7938 1.987 reject 0.0001 0.022954 0.0022954
DUNIT2C 0.193083 -0.234465 15.7511 1.987 reject 0.0001 0.027144 0.0027144
DUNIT3A 0.093480 -0.074001 9.2022 1.987 reject 0.0001 0.018200 0.0018200
DUNIT3B 0.193105 -0.074001 11.5735 1.987 reject 0.0001 0.023079 0.0023079
DUNIT3C 0.287517 -0.074001 13.0089 1.987 reject 0.0001 0.027790 0.0027790
EUNITIA -0.341567 -0.415037 8.2228 1.987 reject 0.0001 0.008935 0.0008935

JEUNIT1B -0.285903 -0.415037 16.4398 1.987 reject 0.0001 0.007855 0.0007855
EUNITIC -0.228114 -0.415037 28.0371 1.987 reject 0.0001 0.006667 0.0006667
EUNIT2A -0.191735 -0.234465 4.9571 1.987 reject 0.0001 0.008620 0.0008620
EUNIT2B -0.159181 -0.234465 10.2595 1.987 reject 0.0001 0.007338 0.0007338
EUNIT2C -0.125422 -0.234465 18.2989 1.987 reject 0.0001 0.005959 0.0005959
EUNIT3A -0.059363 -0.074001 1.7313 1.987 cannot reject 0.04 0.008455 0.0008455
EUNIT3B -0.047035 -0.074001 3.9949 1.987 reject 0.0001 0.006750 0.0006750
EUNIT3C -0.037840 -0.074001 6.6094 1.987 reject 0.0001 0.005471 0.0005471
RUNIT1A -0.423340 -0.415037 -0.8043 1.987 cannot reJect 0.21 0.010323 0.0010323
IUNIT 1B -0.430266 -0.415037 -1.4924 1.987 cannot reject 0.075 0.010204 0.0010204
ILN•T IC -0.446366 -0.415037 -3.3643 1.987 reject 0.0005 0.009312 0.0009312
1JNIT2A -0.2876351 -0.234465 -5.2010 1.987 reject 0.0001 0.010223 0.0010223
IUNIT2B -0.324256 -0.234465 -7.9913 1.987 reject 0.0001 0.011236 0.0011236
RUNIT2C -0.358465 -0.234465 -9.7691 1.987 reject 0.0001 0.012693 0.0012693
IUNIT3A -0.182044 -0.074001 -9.0953 1.987 reject 0.0001 0.011879 0.0011879

.IUNIT3B -0.246736 -0.074001 -12.5626 1.987 reject 0.0001 0.013750 0.0013750
IUNIT3C -0.303469 -0.074001 -15.2806 1.987 reject 0.0001 0.015017 0.0015017

121



Program X. This program is used to calculate the mean of the 100 incorrectly developed
slope coefficients and correctly apply the mean slope in a new production run with fixed
costs computed separately by use of a factor.

*PROGRAM NAME: UNITIC. SAS,-

LIBNAME PARAMS '[KTHOMSON. THESIS]';
OPTIONS LINESIZE=72;
DATA ONE;

SET PARAMS.DUNITI A
PARAMS.DUNITIB
PARAMS.DUNIT IC
PARAMS.EUNITIA
PARAMS.ELTNITI1B
PARAMS EUNITI1C
PARAMSIUNITI1A
PARAMS.RJNITIB
PARAMS.IUNIT IC
PARAMS .DUNIT2A
PARAMS.DUNIT2B
PARAMS .DUNIT2C
PARAMS.EUNIT2A
PARAMS EUNIT2B
PARAMS.EUNIT2C
PARAMS.IUNIT2A
PARAMS.IUNIT2B
PARAMS . UNIT2C
PARAMS.DUNIT3A
PARAMS.DUNIT3B
PARAMS .DUNIT3C
PARAMS.EUNITIA
PARAMS EUNIT3B
PARAMS.EUNIT3C
PARAMS.IUNIT33A
PARAMSJUN[T3B
PARAMS.IUNIT3C;

PROC SORT;
BY_-MODEL_,

PROC UNI VARIATE,
VAR LNLPP,
BY _ODEL,

PROC MEANS DATA=ONE,
VAR LNLPP,
BY_ýMODELl
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OUTPUT OUT=PARAMS.TESTICT MEAN(LNLPP)=SLPCOEFF
STD(LNLPP)=STDDEV STDERR(LNLPP)~=ERROFEST;

PROC PRINT,
DATA PARAMS.UNITICT;1

SET PARAMS.TESTICT;-
VARCOST=hO;
COST=O;
x=o.
T 1=40000;
DO 1=1 TO 480;

X=~X+ ;
COST=TI *X**SLPCOEFF,-
VARCOST=VARCOST+COST;

END,
IFMODEL =DUNIT IA'THEN

TOTCOST VARCOST* 1.25;
ELSE IF_-MODEL- 'DUNIT2A' THEN

TOTCOST VARCOST* 1.25;
ELSE IF_-MODEL- = DUNIT3A' THEN

TOTCOST =VARCOST* 1.25;-
ELSE IF _MODEL- = 'DUNIT IlB'THEN

TOTCOST =VARCOST*1.5385;

ELSE IF_-MODEL- 'DUMIT2B' THEN
TOTCOST VARCOST* 1.5.385;

ELSE IF_-MODEL- = 'DUNI~T3B' THEN
TOTCOST =VARCOST* 1. 5385;

ELSE IF _MODEL- 'EUNIT IAX THEN
TOTCOST VARCOST* 1.25;

ELSE IF_-MODEL- =EUNIT2A' THEN
TOTCOST =VARCOST* 1.25;

ELSE IF _MODEL- = EUNIT3)A' THEN
TOTCOST =VARCOST* 1.25;-

ELSE IF _MODEL- = 'EUNIT IB' THEN
TOTCOST =VARCOST*1.5385;

ELSE IF_-MODEL- = EUNIT2B' THEN
TOTCOST VARCOST*1.5385-;

ELSE IF _MODEL- = `EUNIT3B' THEN
TOTCOST VARCOST*1.5'185;-

ELSE IF _MODEL- = 'IUNITlIA' THEN
TOTCOST =VARCOST* 1. 25;-

ELSE IF -MODEL- = 'INIT2A' THEN
TOTCOST = VARCOST* 1.25,1

ELSE IF _MODEL- = 'IUNIT3 A! THEN
TOTCOST = VARCOST* 1-25,-
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ELSE EF _MODEL_ ='IIJNIT IlB THEN
TOTCOST =VARCOST* 1. 5385;

ELSE IF _MODEL_ ='IUNIT2B' THEN
TOTCOST =VARCOST* 1. 5385;

ELSE IF _MODEL- = 'IJJNT3B' THEN
TOTCOST = VARCOST* 1. 5385;

ELSE TOTCOST = VARCOST*2;
PROC PRINT,
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Program )U: This program is used to calculate the mean of the 100 incorrectly developed
slope coefficients and to incorrectly apply the mean slope in a new production run with
fixed costs included in the T I value.

* * PROGRAM NAME: INITII. SAS;

LIB3NAME PARAMS '[KTHOMSON. THESIS]';
OPTIONS LINESIZE==72,
DATA ONE,

SET PARAMS.DUNIT IA
PARAMS.DUNIT lB
PARAMS.DUNIT IC
PARAMS .EUNITI1A
PARAMS.EIJNITIB
PARAMS.EUNIT IC
PARAMS.1UNIT IA
PARAMS.RJNITIB
PARAMS.IUNIT1C
PARAMS.DUNMT2A
PARAMS .DUNIT2B
PARAMS.DUNIT2C
PAR-AMS .EUNIT2A
PARAMS.EIJNIT2B
PARAMS.EUNIT2C
PARAMS.IUNIT2A
PARAMS.IUNIT2B
PARAMS.IUNIT2C
PARAMS .DUNIT3 A
PARAMS.DUMIT3B3
PARAMS .DUNIT3 C
PARAMS .EUNIT3 A
PARAMS.EUNIT3B3
PARAMS.EUNIT3C
PARAMS IUNIT3 A
PARAMS IUNIT33B
PARAMS.IUNIT3C;

PROC SORT,
BYMODEL ,

PROC UN! VARIATE,-
VAR LNLPP;
BY_-MODEL_,-

PROC MEANS DATMON'E,
VAR LNLPP,
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BY _MODEL_-
OUTPUT OUT=PARAMS.TESTIIT MEAN(LNLPP)=SLPCOEFF

STD(LNLPP)=STDDEV STDERR(LNLPP)=ERROFEST;
PROC PRINT;

DATA PARAMS.UNITIIT;
SET PARAMS.TESTIIT,
INFILE T IVALII;

INPUT T1;
TOTCOST=0;
COST=0;
X=0;
DO 1=1 TO 480;

X=X+ I;
COST=TI*X**SLPCOEFF;
TOTCOST=TOTCOST+COST;

END;
PROC PRINT;

The following page has the another section of the Excel Spreadsheet (LOTFC.XLS) used
for calculation of the lot fixed costs with a TI of $40,000 and the associated TI values for
incorrect application of the learning curve coefficients. The TVC calculations from the
LEARN Program are on the following page.
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This is the output from the LEARN program for a TI of $40,000 and all three slopes:

Unit Curve Formulation

First unit (A) = ****40000.00
Slope - 75.0%
Slope coefficient (b) = -0.415037
Unit/lot - 1- 480
Cost of unit 480 = *****3084.92
Average cost of unit Ito 480 = *****5178.88
Total cost through unit 480 = **2485864.70
Total cost of lot ( 1 - 480) = **2485864.70
Average cost of units in lot = *****5178.88

Unit Curve Formulation

First unit (A) - ****40000.00
Slope = 85.0%
Slope coefficient (b) = -0.234465
Unit/lot = 1- 480
Cost of unit 480 - *****9405.94
Average cost of unit I to 480 = ****12230.93
Total cost through unit 480 = **5870846.52
Total cost of lot ( I - 480) = **5870846.52
Average cost of units in lot = **** 12230.93

Unit Curve Formulation

First unit (A) - ****40000.00
Slope = 95.0%
Slope coefficient (b) - -0.074001
Unit/lot - 1- 480
Cost of unit 480 - ****25330.66
Average cost of unit Ito 480 = ****27333.50
Totalcost through unit 480 = *13120081.91
Total cost of lot ( 1 - 480) = *13120081.91
Average cost of units in lot = ****27333.50

128



Appendix B: Sample Programs/Output for Analysis of Variance

The following programs were used for data simulation and analysis for comparison
of the fitting capabilities of the Standard Unit Formulation and SAF/FMC Formulation of
the learning curve. In addition to the programs below, the following programs from
Appendix A were used: I, II, IV, and VI.

Program XII: This program was created to produce an independent data file for the three
???COMB.SAS files for fitting the Unit and SAF/FMC models. The seed for the
RANNOR procedure was changed from the seed used in the NORMAL2.SAS RANNOR
procedure.

*PROGRAM NAME: NORM2.SAS;

*TIHS PROGRAM SIMULATES A LEARNING CURVE WITH FIRST UNIT VALUE

OF 25000 AND AN 85% SLOPE WITH A STANDARD DEVIATION OF .2 AND A
RANDOM ERROR,

DATA ONE;
OPTIONS LINESIZE=72;
A = LOG (25000);
B = LOG (.85)/LOG (2);
C =.2;
DO J-- I TO 100;

TOTCOST = 0;
DO I= 1 TO 480;

LNX=LOG(I),
Z = RANNOR (1234);
LNY = A + (B * LNX) + (C*Z),
COST = EXP (LNY);
TOTCOST = TOTCOST + COST;
FILE NORM2;
PUT I COST TOTCOST;

END;
END;
PROC PRINT,
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Program XIII: This is one of three programs used to separate the production run data
created in NORM2. SAS into twelve lots. These three programs were for total cost;
therefore, fixed cost were added to each lot. The data file from this program was used as
an input for the ???COMB. SAS programs for fitting the unit and SAF/FMC formulations.
Using the following information, the other two programs could be created:

D = Decreasing lot profile
E = Equal lot profile
I = Increasing lot profile

The bold and underlined letters and numbers would be changed to reflect the treatment
under consideration.

*PROGRAM NAME: LTGEND2B;

*THIS PROGRAM IS FOR A DECREASING LOT SIZE PROFILE, 85% SLOPE,

AND 35% FIXED COST BURDEN;

DATA TWO;
OPTIONS LINESIZE=72;
INFILE NORM2;
INPUT NI-N1440;
ARRAY NUM[1440] N1-N1440;
ARRAY COST[480] YY1-YY480;
ARRAY LOT[12,6] L1-L72;
ARRAY TOTCOST[480] TCI-TC480;

DO I = 1 TO 480;
COST[I] = NUM[I*3-I];
TOTCOST[I] = NUM [I'3];

END;

LFC = 164647; *LFC = LOT FIXED COST;

*THE FOLLOWING STATEMENTS BREAKS THE PRODUCTION RUN DATA

INTO 12 ARRAYS EACH REPRESENTING A LOT. EACH ARRAY HAS SIX
ELEMENTS HOLDING THE FOLLOWING INFORMATION: CUMULATIVE
UNITS, CUMULATIVE VARIABLE COSTS, TOTAL COSTS, ALGEBRAIC LOT
PLOT POINT, LOT AVERAGE COSTS, AND LOT SIZE;

LABEL1
TEMP = 65 + (23 * RANUNI(M1J10));
TEMP = ROUND(TEMP, 1);

LOT[l, 1] = TEMP;
LOT[ 1,2] = TOTCOST[TEMP];

130



LOT[ 1,3] = TOTCOST[TEMP] + LFC;
LOT[1,4] = 0;
B =LOG(.85)ILOG(2);

DOI= I TO LOT~i1,1];
DUM = LOT(1,4] + (I**B);
LOT[ 1,41 = DUM;

END,
LOT[ 1,4] = (LOT[ 1 ,4]/LOT[ 1, 1 ])**( 1/B),
LOT[1,5] = LOT[1,3]ITEMP,
LOT[l1,6] = LOT[ 1, 1;

TENDP=60 +(5 * RANUNI(l I10));
TEND = ROUND(TEMP, 1);

LOT[2, I] =TEMP + LOT[ 1, 1]
LOT[2,2] =TOTCOSTIILOT[2,1I]];
LOT[2,3] = LOT[2,2] - LOT[1,2] + LFC;
LOT[2,4] = 0;
Z =LOT[2,1 I LOT[1, 1;
DOI= 1 TO Z;
DUM = LOT[2,4] + ((I + LOT[ 1, 1])* *B),
LOT[2,4] = DUM;

END;
LOT[2,41 =(LOT[2,4]IZ)**(IJB);
LOT[2,5] = LOT[2,3]ITENP,
LOT[2,6] = LOT[2, 1] - LOT[ 1, 1]

TEMP=5 5 + (5 * RANUNI(11I10));
TEMP = ROUND(TEMP, 1);-

LOT[3,1] = TEMP + LOT[2,1];
LOT[3,2] = TOTCOST[LOT[3, I]];
LOT[3,3] LOT[3,21 - LOT[12,2] + LFC;
LOT[33,4] = 0;
Z = LOT[3,1I] - LOT[2, 1];
DO I 1 TOQZ;

DUM = LOT[3,4] + ((I + LOT[2,1I])* *B);-
LOT[-),4] = DUM;-

END,
LOT[3,4] =(LOT[3,4]/Z)**(1/B);
LOT[3,5] = LOT[3,3]ITENU-;
LOT[3,6] = LOT[3, 1] - LOT(2,1]I

TEMP =50 + (5 * RANUNI(l1I10));
TEMP = ROUND(TEMP, 1);

LOT[4, 11 = TEMP + LOT[3,1]
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LOT[4,2] = TOTCOST[LOT[4,1]
LOTI4,31 = LOT14,2) - LOTI3,2] + LFC;
LOT[4,4] = 0;
Z =LOT[4,1] -LOT[3,I],-

DOI= 1 TO Z;
DUM = LOT[4,4] + ((I + O[3I]*Bl
LOT[4,4] =DUM;

END;
LOT[4,4] = (LOT[4,4]/Z)**(1/B);
LOT[4,5] = LOT[4,3-]/TEMP,-
LOT[4,6] = LOT[4,1I] - LOT[3,I])-

TEMP = 45 + (5 * AUNI (I1I10));
TEMP = ROUND(TENP, 1);

LOT-[5, 1] = TEMP + LOT[4,1]I
LOT[5,21 TOTCOST[LOT[5,1I]];
LOT[5,3] = LOT[5,2] - LOT[4,2] + LFC;
LOT[5,4] = 0;
Z =LOT[5, I] - LOT[4,1I];

DOI= 1 TO Z;
DUM = LOT[5,4] + ((I + LT41)*~
LOT[5,4] =DUM;

END;,
LOT[5,4] = (LOT[5,4]IZ)**(1/B);
LOT[5,5] = LOT[5,3]ITEMIP;
LOT[5,6] = LOT[5,] I LOT[4,1]I

TEMIP = 40 + (5 * R.AN4'J(1 1 10));
TEMIP = ROUND(TEMP, 1);

LOT[6,1I] =TEMP + LOT[5,1]I
LOT[6,2] = TOTCOST[LOT[6, 11];
LOT[6,3)] = LOT[6,2] - LOT[5,2] + LFC;
LOT[6,4] 0;
Z = LOT[6, I] - LOT[5,1I];

DOI= 1 TO Z;
DUM = LOT[6,4] + ((I + LOT[5,1I])* *B);-
LOT[6,4] = DUMy;

END;
LOT[6,4] =(LOT[16,4]/Z)**(1/B);
LOT[6,5] =LOT[6,3]I/TENT;
LOT[6,6] = LOT[6, 1] - LOT[5,1I];

TEMP =3 5 + (5 * RANUNI(11I1I0));-
TEMIP = ROUND(TENP, 1);
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LOT[7, I] =TEMP + LOT[6,I])-
LOT[7,2] = TOTCOST[LOT[7, I];
LOT[7,3] =LOT[7,2] - LOT[6,21 + LFC;
LOT[7,4] =0;1
Z =LOT[7,1I] - LOT[6,1]I

* DOI=1TO Z;
DUM = LOT[7,4] + ((I + LOT[6, I])* *B);
LOT[7,41 =DUM-

END;
LOT[7,4] = (LOT[7,4]/Z)**(1/B),
LOT[7,5] = LOT[7,3]/TEMP;
LOT[7,6] = Z;

TEMP=3)0+ (5 * RANUNI(11I10));
TEMP = ROUND(TEMIP, 1);

LOT[8, I] =TEMP + LOT[7, I];
LOT[8,21 = TOTCOST[LOT[8,1]]l;
LOT[8,3] LOT[8,2] - LOT[7,2] + LEC;
LOT[8,4] =0;
Z =LOT[8,1I] - LOT[7, I];

DO I= I TO Z;
DUM = LOT[8,4] + ((I + LOT[7,lI])* *B),
LOT[8,41 =DUM;

END,
LOT[8,4] = (LOT[8,41/Z)**(IIB);
LOT[8,5] = LOT[8,-3]/TEMP;
LOT[8,6] = Z

TEM.P=25 +(5 *P fi4.NTNI(I I 1));
TEMP = ROUND(TEMP,I1);

LOT[9,1I] =TEMP + LOT[8,1J;-
LOT[9,21 = TOTCOST[LOT[9,1I;
LOT[9,3] = LOT[9,2] - LOT[8,2] + LFC;-
LOT[9,4] = 0;
Z = LOT[9,1I] - LOT[8, I]

DO I =I TO Z;
DTJM = LOT[9,4] + ((I + LOT[8,1])**B);
LOT[9,4] =DUJM;

END,
LOT[9,4] =(LOT[9,41/Z)**(1/B)i
LOT[9,5] = LOT[9,31/TEMP;
LOT[9,6] = Z;1

TEMP = 20 + (5 * RANUNI(I 11I0));
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TEMP = ROUND(TEMP, 1);
LOT[10,1] = TEMP + LOT[9,1];

IF LOT[10,1] > 480 THEN GOTO LABEL1;
LOT[10,2] = TOTCOST[LOT[10,1]];
LOT[10,3] = LOT[10,2] - LOT[9,21 + LFC;
LOT[10,4] = 0;
Z = LOT[10,1] - LOT[9,1];

DO I = I TO Z;
DUM = LOT[10,4] + ((I + LOT[9,1])**B);
LOT[ 10,4] = DUM;

END;
LOT[ 10,4] = (LOT[ I 0,4]/Z)**(1/B);
LOT[ 10,5] = LOT[ 10,3]/TEMP;
LOT[10,6] = Z;

TEMP = 10 + (5 * RANUNI(1 110));
TEMP = ROUND(TEMP, 1);

LOT[11,1] = TEMP + LOT[10,1];
IF LOT[11,1] > 480 THEN GOTO LABEL1;

LOT[ 11,2] = TOTCOST[LOT[ 11,1 ]];
LOT[ 11,3] = LOT[ 11,2] - LOT[10,2] + LFC;
LOT[11,4] = 0;
Z = LOT[11,1] - LOT[10,1];

DOI= 1 TOZ;
DUM = LOT[ 11,4] + ((I + LOT[10,1])**B);
LOT[ 11,4] = DUM;

END;
LOT[ 11,4] = (LOT[1 1,4]/Z)**(1/B);
LOT[ 11,5] = LOT[1 1,3]/TEMP;
LOT[11,6] = Z;

TEMP = 480 - LOT[11,1];
IF TEMP < 5 OR TEMP > 10 THEN GOTO LABEL 1;

LOT[12,1] = TEMP + LOT[11,1];
LOT[ 12,2] = TOTCOST[LOT[ 12,1]];
LOT[12,3] = LOT[12,2] - LOT[1 1,2] + LFC;
LOT[12,4] = 0;
Z = LOT[ 12,I1] - LOT[ 11,1];

DOI= 1 TO Z;
DUM = LOT[12,4] + ((I + LOT[11,1])**B);
LOT[ 12,4] = DUM;

END;
LOT[12,4] = (LOT[ 12,4]/Z)**(l/B);
LOT[12,5] = LOT[12,3]/TEMP;
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LOT[12,6] = Z;

*THE FOLLOWING STATEMENTS PUTS THE LOT DATA INTO A FILE TO BE

USED BY THE
REGRESSION PROGRAMS,

FILE LTGEND2B;
DOI= I TO 12;

PUT LOT[I, 1] LOT[1,2] LOT[I,3] LOT[I,4] LOT[I,5] LOT[I,6];
END;
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Program XIV: This program was created to reduce independence for the two ANOVA
calculations. This is a sample of three programs written for the fitting of the two models
witii 35% fixed cost burden and 85% slope. The other 2 programs can be reproduced from
this program by changing the variable and input file names using the following key.

D = decreasing lot profile
E = equal lot profile
I = increasing lot profile

The bold and underlined letter(s) would be changed depending on the treatment under
consideration.

*PROGRAM NAME: D2BCOMB. SAS;

*THIS PROGRAM THE FITS THE STANDARD UNIT LEARNING CURVE AND

SAF/FMC MODEL TO AN DECREASING LOT PROFILE, 85% CURVE, WITH 35%
FIXED COSTS;

LIBNAME PARAMS '[KTHOMSON.THESIS]';
LIBNAME MAD '[KTHOMSON.THESIS]';
OPTIONS LINESIZE=72,

DATA THREE;
INFILE LTGEND2B;

INPUT CUMX TOTY LOTCOST LPP AVUNCST LOTSZ;
INFILE PRODRUN,

INPUT PRDRUN,

LNLPP = LOG(LPP),
LNAVUCST = LOG(AVUNCST);

* NEXT TWO MODELS REGRESS NATURAL LOG OF AVG UNIT COST FOR

LOT (DEPENDENT VARIABLE) AGAINST NATURAL LOG OF ALGEBRAIC LOT
PLOT POINT (INDEPENDENT VARIABLE). REGRESSION WILL PRODUCE AN
INTERCEPT AND A COEFFICIENT FOR THE ALGEBRAIC LOT PLOT POINT
THE INTERCEPT, WHEN CONVERTED FROM LOG SPACE TO UNIT SPACE, IS
EQUIVALENT TO THE 1ST UNIT COST (A) WHEREAS THE COEFFICIENT FOR
THE NATURAL LOG OF THE ALGEBRAIC LOT PLOT POINT IS THE SLOPE
COEFFICIENT. TO COMPUTE THE SLOPE, ONE WOULD USE THE
FOLLOWING EQUATION: SLOPE = E**(COEFFICIENT * LOG(2));

PROC REG DATA=THREE OUTEST = PARAMS.DUN2B,
DUN2B;MODEL LNAVUCST = LNLPP,
BY PRDRUN,
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OUTPUT OUT=DUN2B P=PUC R=RESID;
PROC PRINT;

* THE NEXT MODEL (SAF/FMC) USES NON LINEAR REGRESSION. PARTIAL

DERIVATIVES WITH RESPECT TO THE PARAMETERS HAVE NOT BEEN
SPECIFIED SINCE THE DUD (DOESN'T USE DERIVATIVES) METHOD IS BEING
USED;

PROC NLIN DATA=THREE OUTEST=PARAMS.DS2B;

*INITIAl, GUESS VALUES FOR PARAMETERS;

PARMS B=-.3 F=3 5000 A=25000;
DS2B:MODEL AVUNCST = F/LOTSZ + (A*LPP**B);
BY PRDRUN;
BOUNDS -I<=B<=0;
BOUNDS 0<=F<=900000;
BOUNDS 0<-A<=200000;
OUTPUT OUT=DS2B P=PUC R=RESIDLR;

*WRITES THE PREDICTED AVG COSTS (UNIT SPACE), RESIDUALS (UNIT
SPACE), AND ORIGINAL DATA SET TO A NEW DATA SET FOR FURTHER
ANALYSIS,

DATA UND2B; *CREATES A NEW DATA SET USED FOR
COMPUTATIONS;

SET DUN2B; *CALLS IN DATA SET CREATED ABOVE INTO NEW DATA SET;
PUCDLR=EXP(PUC),
AUCDLR=EXP(LNAVUC ST);
RESIDLR=AUCDLR-PUCDLR;
ABRESID=ABS(RESIDLR);
PROC PRINT,

DATA SD2B,
SET DS2B,
ABRESID=ABS(RESIDLR),
PROC PRINT,

PROC MEANS DATA=UND2B;
VAR ABRESID,
BY PRDRUN;
OUTPUT OUT=MADMUNI2B N(ABRESID)=N MEAN(ABRESID)=MAD;

PROC MEANS DATA = SD2B,
VAR ABRESID,
BY PRDRUN,
OUTPUT OUT=MAD.MSAD2B N(ABRESID)=N MEAN(ABRESID)=MAD.
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* THIS SECTION COMBINES THE PERMANENT PARAMETER DATA SETS

FROM EACH MODEL INTO ONE PERMANENT DATA SET;

DATA PARAMS.FINALD2B;
SET PARAMS.DS2B;
IF _TYPE ='FINAL';

DATA PARAMS.PRMD2B,
SET PARAMS.DUN2B

PARAMS.FINALD2B,
PROC PRINT;

* THIS SECTION COMBINES THE PERMANENT MAD DATA SETS FROM EACH

MODEL INTO ONE PERMANENT MAD DATA SET,

DATA MAD.MADD2B;
SET MAD.MUND2B

MAD.MSAD2B;
PROC PRINT,
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Program XV: This program was created to combine the MAD files from nine of the
COMB???. SAS files for ANOVA calculations with fixed costs held constant at 35%.

*PROGRAM NAME: COMBINEFC. SAS;

LIBNAME MAD '[KTHOMSON.THESIS],;
OPTIONS LINESIZE=72,
DATA MAD. INI,
INFILE LABELSFC,
INPUT SLOPE$ LOTPRO$ FCPCNT$ MOD$;
SET MAD.D1BMAD
MAD.E1BMAD
MAD.I1BMAD
MAD.D2BMAD
MAD.E2BMAD
MAD.I2BMAD
MAD.D3BMAD
MAD.E3BMAD
MAD.I3BMAD;

PROC PRINT;
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Program XVI: This program was created to combine the MAD files from six of the
COMB?'?.SAS and three ???COMB. SAS for ANOVA calculations with slope held
constant at 85%. The three ???COMB.SAS files were used instead of the COMB???.SAS
for the same treatment to ensure this data set of MADs was independent of the
COMBINFC.SAS MAD files. The three files had a fixed cost burden of 35%.

*PROGRAM NAME: COMBINSL.SAS,

LIBNAME MAD '[KTHOMSON. THESIS]';
OPTIONS LINESIZE=72;
DATA MAD.IN2;
INFILE LABELSSL;
INPUT SLOPE$ LOTPRO$ FCPCNT$ MOD$,
SET MAD.D2AMAD

MAD.MADD2B
MAD.D2CMAD
MAD.E2AMAD
MAD.MADE2B
MAD.E2CMAD
MAD.I2AMAD
MAD.MADI2B
MAD.I2CMAD,

PROC PRINT,
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Program XVII: This program was used to analyze the main and two-way interaction
effects between the Unit and SAF/FMC formulations, the three lot profiles, and the three
fixed cost burden rates with the slope being held constant at 85%. The analysis was
accomplished through ANOVA on the MAD for each treatment.

* FILENAME: PROCANSL.SAS;

LIBNAME MAD '[KTHOMSON.THESIS]',
DATA THREE,
SET MAD.IN2;
OPTIONS LINESIZE=72;

PROC ANOVA DATA=THREE;
TITLE 'ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD)',

*FACTORS UNDER CONSIDERATION,
CLASSES SLOPE LOTPRO FCPCNT MOD;

*EXAMINE ALL MAIN AND TWO-WAY INTERACTION EFFECTS;

MODEL MAD = SLOPEILOTPROIMOD@2;
MEANS SLOPEILOTPROIMOD@2/REGWF REGWQ SCHEFFE;

The following is output from program XVII:

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD)
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure
Class Level Information

Class Levels Values

SLOPE 1 85%SLOPE

LOTPRO 3 DECREASE EQUAL INCREASE

FCPCITT 3 20•-FC 35%FC 50%FC

MOD 2 SAF UNIT

Number of observations in data set = 1800

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 2
23:40 Wednesday, July 27, 1994
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Analysis of Variance Procedure

Dependent Variable: MAD
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 13 3.659E+09 2.815E+08 1150.31 0.0001

Error 1786 4.371E+08 2.447E+05

Corrected Total 1799 4.096E+09

R-Square CV. Root MSE MAD Mean

0.893310 59.27462 494.68 834.56

Source DF Anova SS Mean Square F Value Pr > F

FCPCNT 2 2.060E+08 1.030E+08 420.90 0.0001

LOTPRO 2 1.074E+09 5.370E+08 2194.46 0.0001

LOTPRO*FCPCNT 4 2.842E+08 7.104E+07 290.30 0.0001

MOD 1 7.865E+08 7.865E+08 3213.79 0.0001

FCPCNT*MOD 2 2.077E+08 1.039E+08 424.46 0.0001

LOTPRO*MOD 2 1.101E+09 5.505E+08 2249.71 0.0001

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 3
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2 3

Critical F 3.8466707 3.0007628

Means with the same letter are not significantly different.

REGWF Grouping Mean N FCPCNT

A 1279.14 600 50%FC

B 765.31 600 35%FC

C 459.22 600 20%FC
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ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 4
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2 3
Critical Range 56.015565 66.993245

Means with the same letter are not significantly different.

REGWQ Grouping Mean N FCPCNT

A 1279.14 600 50'FC

B 765.31 600 35ýFC

C 459.22 600 20%FC

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 5
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Scheffe's test for variable: MAD

NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 244710.7
Critical Value of F= 3.00076

Minimum Significant Difference= 69.968

Means with the same letter are not significantly different.

Scheffe Grouping Mean N FCPCNT

A 1279.14 600 50;FC

B 765.31 600 35ýFC

C 459.22 600 20kFC

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 6
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23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2 3
Critical F 3.8466707 3.0007628

Means with the same letter are not significantly different.

REGWF Grouping Mean N LOTPRO

A 1917.61 600 DECREASE

B 416.58 600 INCREASE

C 169.49 600 EQUAL

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 7
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2 3
Critical Range 56.015565 66.993245

Means with the same letter are not significantly different.

REGWQ Grouping Mean N LOTPRO

A 1917.61 600 DECREASE

B 416.58 600 INCREASE

C 169.49 600 EQUAL

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 8
23:40 Wednesday, July 27, 1994
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Analysis of Variance Procedure

Scheffe's test for variable: MAD

NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 244710.7
Critical Value of F= 3.00076

Minimum Significant Difference= 69.968

Means with the same letter are not significantly different.

Scheffe Grouping Mean N LOTPRO

A 1917.61 600 DECREASE

B 416.58 600 INCREASE

C 169.49 600 EQUAL

Level of Level of ------------- MAD-------------
LOTPRO FCPCNT N Mean SD

DECREASE 20%-FC 200 937.16126 811.38663
DECREASE 35%FC 200 1711.83818 1598.80144
DECREASE 50ýFC 200 3103.83399 3039.49906
EQUAL 20%FC 200 163.00909 45.33409
EQUAL 35'FC 200 172.01246 47.90825
EQUAL 50%FC 200 173.43797 51.98667
INCREASE 20uFC 200 277.50249 124.61460
INCREASE 35-;FC 200 412.08605 253.08889
INCREASE 50%FC 200 560.16131 430.61474

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 9
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2
Critical F 3.8466707

Means with the same letter are not significantly different.

REGWF Grouping Mean N MOD

A 1495.56 900 UNIT
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B 173.56 900 SAF

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 10
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 244710.7

Number of Means 2
Critical Range 45.736517

Means with the same letter are not significantly different.

REGWQ Grouping Mean N MOD

A 1495.56 900 UNIT

B 173.56 900 SAF

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 11
23:40 Wednesday, July 27, 1994

Analysis of Variance Procedure

Scheffe's test for variable: MAD

NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 244710.7
Critical Value of F= 3.84667

Minimum Significant Difference= 45.736

Means with the same letter are not significantly different.

Scheffe Grouping Mean N MOD

A 1495.56 900 UNIT

B 173.56 900 SAF
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Level of Level of ------------- MAD-------------
FCPCNT MOD N Mean SD

20:6FC SAF 300 169.66080 59.05640
20ýFC UNIT 300 748.78776 715.33023
352FC SAF 300 182.50388 71.89815
35ýFC UNIT 300 1348.12058 1405.99826
50%FC SAF 300 168.52600 58.55962
50%FC UNIT 300 2389.76285 2680.66553

Level of Level of ------------- MAD-------------
LOTPRO MOD N Mean SD

DECREASE SAF 300 155.89527 44.09397
DECREASE UNIT 300 3679.32702 1915.91076
EQUAL SAF 300 152.97851 39.97157
EQUAL UNIT 300 185.99451 50.91495
INCREASE SAF 300 211.81690 80.36530
INCREASE UNIT 300 621.34967 335.44433
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Program XVIII: This program was used to analyze the main and two-way interaction
effects between the Unit and SAF/FMC formulations, the three lot profiles, and the three
slopes with the fixed cost burden being held constant at 35%. The analysis was
accomplished through ANOVA on the MAD for each treatment.

* FILENAME: PROCANFC.SAS;

LIBNAME MAD '[KTHOMSON.THESIS]';
DATA THREE;
SET MAD.IN1,
OPTIONS LINESIZE=72;

PROC ANOVA DATA=THREE;
TITLE 'ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD)',

*FACTORS UNDER CONSIDERATION;
CLASSES SLOPE LOTPRO FCPCNT MOD;

*EXAMINE ALL MAIN AND TWO-WAY INTERACTION EFFECTS;

MODEL MAD = SLOPEILOTPROIMOD@2;
MEANS SLOPEILOTPROIMOD@2/REGWF REGWQ SCHEFFE;

The following is the output from Program XVIII:

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 1
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure
Class Level Information

Class Levels Values

SLOPE 3 75%SLOPE 85%SLOPE 95%SLOPE

LOTPRO 3 DECREASE EQUAL INCREASE

FCPCNT 1 35%FC

MOD 2 SAF UNIT

Number of observations _n data set = 1800

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 2
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Dependent Variable: MAD

148



Sum of Mean
Source DF Squares Square F Value Pr > F

Model 13 5.020E+09 3.862E+08 1024.30 0.0001

Error 1786 6.733E+08 3.770E+05

Corrected Total 1799 5.693E+09

R-Square C.V. Root MSE MAD Mean

0.881737 64.05549 614.00 958.54

Source DF Anova SS Mean Square F Value Pr > F

SLOPE 2 5.953E+08 2.977E+08 789.58 0.0001
LOTPRO 2 1.307E+09 6.534E+08 1733.22 0.0001
SLOPE*LOTPRO 4 4.356E+08 1.089E+08 288.89 0.0001
MOD 1 1.010E+09 1.010E+09 2678.16 0.0001
SLOPE*MOD 2 3.518E+08 1.759E+08 466.53 0.0001
LOTPRO*MOD 2 1.321E+09 6.604E+08 1751.75 0.0001

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 3
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2 3
Critical F 3.8466707 3.0007628

Means with the same letter are not significantly different.

REGWF Grouping Mean N SLOPE

A 1734.37 600 95%SLOPE

B 782.01 600 85iSLOPE

C 359.25 600 75%SLOPE

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 4
23:38 Wednesday, July 27, 1994
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Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2 3
Critical Range 69.526586 83.152096

Means with the same letter are not significantly different.

REGWQ Grouping Mean N SLOPE

A 1734.37 600 95%SLOPE

B 782.01 600 85%SLOPE

C 359.25 600 75%SLOPE

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 5
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Analysis of Variance Procedure

Scheffe's test for variable: MAD

NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 376996.6
Critical Value of F= 3.00076

Minimum Significant Difference= 86.844

Means with the same letter are not significantly different.

Scheffe Grouping Mean N SLOPE

A 1734.37 600 95%SLOPE

B 782.01 600 851SLOPE

C 359.25 600 75%SLOPE

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS 'MAD) 6
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

150



Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2 3
Critical F 3.8466707 3.0007628

Means with the same letter are not significantly different.

REGWF Grouping Mean N LOTPRO

A 2150.66 600 DECREASE

B 514.72 600 INCREASE

C 210.25 600 EQUAL

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 7
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2 3
Critical Range 69.526586 83.152096

Means with the same letter are not significantly different.

REGWQ Grouping Mean N LOTPRO

A 2150.66 600 DECREASE

B 514.72 600 INCREASE

C 210.25 600 EQUAL

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 8
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Scheffe's test for variable: MAD
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NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 376996.6
Critical Value of F= 3.00076

Minimum Significant Difference= 86.844

Means with the same letter are not significantly different.

Scheffe Grouping Mean N LOTPRO

A 2150.66 600 DECREASE

B 514.72 600 INCREASE

C 210.25 600 EQUAL

Level of Level of ------------- MAD-------------
SLOPE LOTPRO N Mean SD

75%SLOPE DECREASE 200 815.37590 780.46615
75%SLOPE EQUAL 200 88.41354 39.06454
75%SLOPE INCREASE 200 173.95158 101.09395
85%SLOPE DECREASE 200 1799.55136 1697.09014
85SSLOPE EQUAL 200 166.74097 47.66152
85QSLOPE INCREASE 200 379.74535 231.79613
95%SLOPE DECREASE 200 3837.04919 3573.54278
95%SLOPE EQUAL 200 375.60219 101.63555
95TcSLOPE INCREASE 200 990.47193 724.20598

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 9
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple F Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2
Critical F 3.8466707

Means with the same letter are not significantly different.

REGWF Grouping Mean N MOD

A 1707.49 900 UNIT

B 209.60 900 SAF
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ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 10
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: MAD

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 df= 1786 MSE= 376996.6

Number of Means 2
Critical Range 56.76822

Means with the same letter are not significantly different.

REGWQ Grouping Mean N MOD

A 1707.49 900 UNIT

B 209.60 900 SAF

ANALYSIS OF MEAN ABSOLUTE DEVIATIONS (MAD) 11
23:38 Wednesday, July 27, 1994

Analysis of Variance Procedure

Scheffe's test for variable: MAD

NOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than REGWF for
all pairwise comparisons

Alpha= 0.05 df= 1786 MSE= 376996.6
Critical Value of F= 3.84667

Minimum Significant Difference= 56.768

Means with the same letter are not significantly different.

Scheffe Grouping Mean N MOD

A 1707.49 900 UNIT

B 209.60 900 SAF

Level of Level of ------------- MAD-------------
SLOPE MOD N Mean SD
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75%SLOPE SAF 300 71.01825 35.89907
75%SLOPE UNIT 300 647.47576 675.59149
85%SLOPE SAF 300 168.68157 58.56982
85%SLOPE UNIT 300 1395.34354 1499.95440
95%SLOPE SAF 300 389.09583 110.63815
95%SLOPE UNIT 300 3079.65304 3126.29987

Level of Level of- ----- MAD--------------
LOTPRO MOD N Mean SD

DECREASE SAF 300 199.65586 153.00837
DECREASE UNIT 300 4101.66177 2517.37570
EQUAL SAF 300 192.59293 146.34103
EQUAL UNIT 300 227.91154 129.78832
INCREASE SAF 300 236.54686 155.85339
INCREASE UNIT 300 792.89904 673.28526
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